NWS TDL 79-17

U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
NATIONAL WEATHER SERVICE
SYSTEMS DEVELOPMENT OFFICE
TECHNIQUES DEVELOPMENT LABORATORY

TDL Office Note 79-17

COMPARATIVE VERIFICATION OF GUIDANCE AND LOCAL AVIATION/PUBLIC WEATHER FORECASTS--NO. 7
(October 1978 - March 1979)

Karl F. Hebenstreit, Joseph R. Bocchieri, Gary M. Carter, J. Paul Dallavalle, David B. Gilhousen, George W. Hollenbaugh, John E. Janowiak, and David J. Vercelli

> AWS TECHNICAL LIBRARY FL 4414 SCOTT ARP, IL 62225 0 9 007 1979

COMPARATIVE VERIFICATION OF GUIDANCE AND LOCAL AVIATION/PUBLIC WEATHER FORECASTS--NO. 7 (October 1978 - March 1979)

Karl F. Hebenstreit, Joseph R. Bocchieri, Gary M. Carter, J. Paul Dallavalle, David B. Gilhousen, George W. Hollenbaugh, John E. Janowiak, and David J. Vercelli

1. INTRODUCTION

This is the seventh in the series of Techniques Development Laboratory (TDL) office notes which compare the performance of TDL's automated guidance forecasts with National Weather Service (NWS) local forecasts made at Weather Service Forecast Offices (WSFO's). The local forecasts, which are produced subjectively, may or may not be based on the automated guidance. We present verification statistics for the cool season months of October 1978 through March 1979 for probability of precipitation, precipitation type, surface wind, opaque sky cover, ceiling height, visibility, and maximum/minimum (max/min) temperature.

The objective guidance is based on equations developed through the Model Output Statistics (MOS) technique (Glahn and Lowry, 1972). We derived these prediction equations by using archived surface observations and forecast fields from the Limited-area Fine Mesh (LFM) model (National Weather Service, 1971), the Trajectory (TJ) model (Reap, 1972), and/or the 6-layer coarse mesh Primitive Equation (6LPE) model (Shuman and Hovermale, 1968). In operations, however, forecast fields from the LFM-II (National Weather Service, 1977a) and the 7-layer PE (7LPE) model (National Weather Service, 1977b) are employed in the MOS guidance equations when LFM or PE data, respectively, are required. Unless indicated otherwise, we usually refer to MOS forecasts based on the LFM-II as "early" guidance; "final" guidance indicates that the objective forecasts were dependent on the 7LPE. Also, the observation times of surface weather elements used as predictors in the early and final guidance generally differ.

The local forecasts from the WSFO's were collected by the Technical Procedures Branch of the Office of Meteorology and Oceanography for the purposes of the NWS combined aviation/public weather verification system (National Weather Service, 1973). These forecasts were recorded for verification according to the direction that they be "...not inconsistent with..." the official weather prognosis. Surface observations as late as 2 hours before the first valid forecast time may have been used in the preparation of the local forecasts. We obtained the observed verification data from the National Climatic Center in Asheville, North Carolina.

2. PROBABILITY OF PRECIPITATION (PoP)

The objective PoP forecasts were produced by the cool season prediction equations described in Technical Procedures Bulletin No. 244 (National

Weather Service, 1978c). Guidance was available for the first, second, and third periods, which correspond to 12-24 hours, 24-36 hours, and 36-48 hours, respectively, after the model input data time (0000 or 1200 GMT). The predictors for the first period equations were forecast fields from the LFM-II model and surface variables observed at the forecast site 3 hours after the initial model time.

Both early and final objective guidance were produced for the second and third periods while only early guidance was available for the first period. All of the early automated forecasts were based on the LFM-II model forecasts. The final guidance for the second period was based on fields from the LFM-II, 7LPE, and TJ models. Third period final guidance equations used 7LPE predictors only.

We verified the forecasts by computing the Brier score (Brier, 1950) for the 87 stations shown in Table 2.1. Please note that we used the standard NWS Brier score which is one-half the original score defined by Brier. Brier scores will naturally vary from one station to the next and from one year to the next because of changes in the relative frequency of precipitation. Therefore, we also computed the percent improvement over climatology, that is, the percent improvement of the Brier scores obtained from the local or guidance forecasts over the Brier scores produced by climatic forecasts. The latter are defined as relative frequencies of precipitation by month and by station determined from a 15-year sample (Jorgensen, 1967).

Table 2.2 shows the results for all 87 stations for 0000 GMT forecasts made during the period October 1978 through March 1979. Tables 2.3 through 2.6 show scores for the NWS Eastern, Southern, Central, and Western Regions, respectively; the second and third period verifications are a three-way comparison between the early and final guidance, and the subjective local forecasts.

A major result of this verification is that NWS forecasters were able to improve upon the early guidance for only the first period. The accuracy of the second and third period early MOS guidance was about the same as that of the local forecasts for all stations combined. When the scores for individual regions were examined, we found the Western Region forecasters scored better than the early guidance for both the second and third periods. In contrast, the early MOS guidance was superior to the local forecasts for these periods in the other three regions.

Another important result is that the early guidance continued to be more accurate than the final guidance for both the second and third periods. The only exception to this occurred in the Western Region where the third period final MOS forecasts were better than the early ones. The superiority of the early over the final guidance has increased since the last cool season (Gilhousen et al., 1979).

Fig. 2.1 shows the trend since 1971 in the accuracy (expressed in terms of percent improvement over climatology) of the first and third period 0000 GMT PoP forecasts. During the 1978-79 cool season, the local forecasts

and the final guidance were more accurate for the first period than the previous season. Recall that starting with the cool season 1977-78 the final and early guidance have been identical in the first period. For third period forecasts, the local forecasts and the early guidance were more accurate than the previous season, but the final guidance was less accurate. Several "long term" trends are evident. First, the accuracy of both guidance and local forecasts has increased since the 1973-74 winter season. Secondly, as the 12-24 h MOS guidance has improved, the difference between the guidance and the local forecasts has decreased. Note that results for the 1975-76 season were unavailable because of missing data. In addition, the 1977-78 scores for the third period were based on less than a full season of data.

3. PRECIPITATION TYPE

A new TDL system for predicting the conditional probability of precipitation type (PoPT) (Bocchieri, 1979) was made operational within NWS in September 1978. This system evolved from the probability of frozen precipitation (PoF) system (Glahn and Bocchieri, 1975; Bocchieri and Glahn, 1976; and National Weather Service, 1976) which became operational in November 1972. The PoPT forecasts replaced the PoF forecasts in the MOS early guidance FOUS12 bulletin (National Weather Service, 1978b); the PoF forecasts remain unchanged on the final guidance FOUS22 bulletin.

The PoPT system gives conditional probability forecasts for three precipitation type categories: frozen (snow or ice pellets), freezing (freezing rain or drizzle), and liquid (rain). Precipitation in the form of mixed snow and ice pellets is included in the frozen category; all other mixed precipitation types are included in the liquid category. Here, the frozen, freezing, and liquid categories will be referred to as simply snow, freezing rain, and rain, respectively. The main difference between the PoPT and PoF systems is that freezing rain forecasts aren't explicitly available in PoF, that is, freezing rain is considered as rain in PoF. Another difference is that the PoPT forecasts are transformed so that a "best category" is also provided operationally; in PoF, a categorical forecast isn't available.

In the NWS verification, local categorical forecasts of precipitation type made at about 1000 GMT are recorded for the valid times 1800 GMT (today), 0600 GMT (tonight), and 1800 GMT (tomorrow). Note that this is a conditional forecast, that is, a forecast of type of precipitation if precipitation occurs. Therefore, a precipitation type forecast is always recorded. The PoPT and PoF guidance forecasts are also conditional and are available whether or not precipitation occurs.

Table 3.1 lists the 62 stations used in this verification. We included only cases when precipitation actually occurred. We were concerned that the forecasters may not have put much effort into making the conditional forecasts when they considered precipitation to be unlikely. Therefore, in order to isolate those situations when the forecaster thought precipitation a definite possibility, we used only the cases when the local PoP was \geq 30%. The PoPs were valid for the 12-h periods centered on the 18-, 30-, and 42-h projections used in the verification.

Table 3.2 shows comparative verification results between the early PoPT guidance and the local forecasts for the snow, freezing rain, and rain categories. The manner in which the guidance "best category" is calculated is described in Bocchieri (1979). It should be noted that this was the first season for which freezing rain forecasts were verified. The bias for the freezing rain category is not shown in the regional breakdown because there weren't enough cases to be meaningful. The results, for all stations combined, indicate that: (1) the guidance was slightly better than the local forecasts for percent correct and skill score2 for the 18-h projection; however, this advantage decreased with increasing projection so that at 42 hours there was little difference between the two; (2) both the guidance and local forecasts slightly overforecast the snow event except at the 18-h projection when the bias for both systems was near 1.00; and (3) the guidance tended to overforecast freezing rain for the 30- and 42-h projections, while the locals overforecasted freezing rain at the 18-h projection but considerably underforecasted this event at the 30- and 42-h projections.

The percent correct and skill scores were very high because the sample included many "obvious" forecasts. For instance, on some days in the southern states, precipitation, if it occurred, would obviously be rain. In order to isolate some of the more difficult forecasting situations, we looked at the cases in which the guidance and locals differed. Again we used only those cases for which local PoPs were \geq 30%. Table 3.3 gives the results. In general, the guidance was correct 51% to 56% of the time, and the locals were correct about 40% of the time.

In order to do a comparative verification among the early PoPT guidance, the final PoF guidance, and the locals, and to compare scores from the 1978-79 season to previous seasons, we also verified two categories of precip type: snow and rain. In this verification, freezing rain was included in the rain category. A PoF categorical forecast of snow was defined as a PoF \geq 50%. In the PoPT system, categorical forecasts of snow were available operationally. In Table 3.4, the verification results, for all stations combined, indicate that: (1) the early guidance was generally better than the final guidance and the local forecasts for all scores and projections; and (2) the final guidance was generally better than the local forecasts except in terms of bias.

The skill scores of the guidance and local forecasts for 6 seasons are shown in Fig. 3.1. Only the 18- and 42-h verification results are presented. Note that some changes in the verification procedure took place during these 6 years. First, the number of stations changed from approximately 90 for the first 2 years to approximately 60 afterwards. Secondly, starting with the 1975-76 season, we used only cases when the local PoP was 30% or greater in

¹ The bias is the number of forecasts of an event divided by the number of observed events.

² The skill score used throughout this paper is the Heidke skill score (Panofsky and Brier, 1965).

order to isolate those cases when the forecaster would have been more confident that precipitation was to occur. Third, starting in the 1976-77 season, we verified the early PoF guidance for the 18-h projection. Finally, in the 1978-79 season, the early PoF system was replaced by the PoPT system, and the PoPT forecasts were verified for both the 18- and 42-h projections.

The results indicate that the guidance was consistently better over the 6 years except during the 1977-78 season when guidance and local forecasts scored the same at the 18-h projection. There was definite improvement, especially for the locals, over the span of the first 4 years. However, the skill of the guidance and locals generally decreased during the last 2 seasons. The observed deterioration of the skill score could have been caused in part by model changes at NMC. The final guidance equations were developed using 6LPE model output, but have been driven by 7LPE model output since January 1978. The early guidance equations operational during 1977-78 were based on LFM model output, but were driven by the LFMII model. By the 1978-79 season we were able to include some LFMII model output in the development of the new early guidance equations. This may account for the fact that the early guidance skill remained unchanged in the face of the otherwise general decrease in skill.

4. SURFACE WIND

The objective wind forecasts were generated by early and final guidance equations valid for the cool season (see National Weather Service, 1979). The definition of the objective surface wind forecast is the same as that of the observed wind: the one-minute average direction and speed for a specific time. Operationally, the early guidance was based on output from the LFM-II model, while the final guidance relied on 7LPE model forecasts. The sine and cosine of the day of the year also were used as predictors in both sets of guidance equations.

Since the local forecasts were recorded as calm if the wind speed was expected to be less than 8 knots, we verified the wind forecasts in two ways. First, for all cases where both the local and guidance (early and final) wind speed forecasts were at least 8 knots, the mean absolute error (MAE) of speed was computed. Secondly, for all cases where both local and guidance forecasts were available, skill score, percent correct, and bias by category (i.e., the number of forecasts in a particular category divided by the number of observations in that category) were computed from contingency tables of wind speed. The seven categories were: less than 8, 8-12, 13-17, 18-22, 23-27, 28-32, and greater than 32 knots. Table 4.1 lists the 94 stations used in the verification. Tables 4.2 - 4.12 show comparative verification scores (0000 GMT cycle only) for 18-, 30-, and 42-h projections. Note that all the objective forecasts of wind speed were adjusted by an "inflation" equation (Klein et al., 1959) involving the multiple correlation coefficient and mean value of wind speed for a particular station and forecast valid time.

The results for all 94 stations combined are shown in Tables 4.2 and 4.3. The MAE scores for direction show that the guidance—particularly the early—was considerably better than the local forecasts. The speed MAE's, skill scores, and percents correct also were better for the guidance. In addition, the early guidance scores were superior to those for the final guidance. Note, however, that the biases by category in Table 4.2 and the contingency tables in Table 4.3 indicate that both types of guidance and the local forecasts tended to underestimate winds stronger than 17 knots (i.e., categories 4, 5, 6, and 7).

Tables 4.4 - 4.7 show scores for the NWS Eastern, Southern, Central, and Western Regions, respectively. The regional values have the same general characteristics as those overall, except the magnitude of the advantage for the guidance over the local forecasts varied from region to region. However, the Western Region scores for wind speed in Table 4.7 indicate that the 18-h local forecasts were as good as the early guidance and slightly better than the final guidance. Also, for the Western Region, the 30- and 42-h final guidance speed forecasts were slightly better than those for the early guidance.

Table 4.8 shows the distribution of wind direction absolute errors by categories—0-30°, 40-60°, 70-90°, 100-120°, 130-150°, and 160-180°—for all 94 stations combined. Here, for the 18-h projection, we see that the early guidance had about 6% fewer errors of 40° or more than did the local forecasts. The final guidance was also superior to the local forecasts in this respect with approximately 3% fewer errors for the same projection. The comparable improvements were 8% and 4%, respectively, for the 30-h projection, and 12% and 7%, respectively, for the 42-h projection.

Distribution of direction errors for the individual regions are given in Tables 4.9 - 4.12. In general, these results are like those in Table 4.8 except, once again, the magnitude of the advantage for the guidance over local forecasts differs from region to region. Here, the results for the Western Region (Table 4.12) show the superiority of the local forecasts over the final guidance for the 42-h projection.

A comparison of the overall MAE's and skill scores for the past 6 cool seasons for 18- and 42-h guidance and local forecasts is presented in Figs. 4.1 - 4.4. In general, the verification data throughout this period were homogeneous, with the exception that the cool season of 1973-74 did not include the month of October. Though the number of stations varied slightly from season to season, the same basic set of verification stations were used. Early guidance scores were available for only the cool seasons of 1976-77, 1977-78, and 1978-79 for the 18-h projection, and 1978-79 for the 42-h projection.

The MAE's for direction are shown in Fig. 4.1. Except for a slight increase in some of the MAE's during 1977-78 cool season, when new forecast models were put into operation, the final guidance and local forecasts for both projections steadily improved over the span of these 6 seasons.

In contrast, the MAE's in Fig. 4.2 indicate a decrease in accuracy for the final guidance speed forecasts between the 1974-75 and 1975-76 cool seasons when inflation was introduced. We knew that the inflation technique would have this effect; however, the bias values shown in Table 4.2 are somewhat closer to 1.0 compared to the bias values in previous cool season surface wind verifications (Carter and Hollenbaugh, 1975). Even so, the MAE's for the guidance are still generally as good as, or better than, those for the local forecasts.

Fig. 4.3 is a comparison of guidance and local skill scores computed on five (instead of seven) categories; the fifth category included all speeds greater than 22 knots. For the first time, the skill scores for the 18-h

final guidance and local forecasts were identical, and the skill scores of the 42-h forecasts were nearly the same. The 18-h early guidance forecasts, although declining in skill from last cool season, remained superior to the final guidance and local forecasts. Also, the 42-h early forecasts were considerably better than the locals and final guidance at that projection.

Fig. 4.4 depicts a comparison of guidance and local skill scores computed on two categories; the first category contained all speeds less than or equal to 22 knots, while the second category included speeds greater than 22 knots. In this manner, we attempted to directly assess the skill of the guidance and local forecasts in regard to predicting strong winds. Similar to the results in Fig. 4.3, the skill of the final guidance for the 18- and 42-h projections increased during the first 5 years, but decreased this past cool season. In contrast, the local forecasts for the 42-h projection showed very little improvement throughout the 6 year period.

The 18- and 42-h early guidance MAE's and skill scores in Figs. 4.1 - 4.3 generally indicate the superiority of the early over the final guidance. This is quite encouraging because the early guidance is now the only source of detailed surface wind guidance available to NWS field forecasters prior to issuance of the public weather forecast.

5. OPAQUE SKY COVER

The operational prediction equation set was unchanged for the 1978-79 cool season. The early guidance set uses LFM-II model output and 0300 (1500) GMT surface observations to produce forecasts at 6 hour intervals from 6 to 48 hours after 0000 (1200) GMT. The final set uses LFM-II and 7LPE model output and 0600 (1800) GMT surface observations to produce forecasts at 6-hour intervals from 12 to 48 hours after 0000 (1200) GMT.

The regionalized equations produce probability forecasts of four categories of opaque sky cover, more commonly known as cloud amount, as shown in Table 5.1. For both the early and final guidance packages, we convert the probability estimates to a single "best category" forecast in a manner which produces good bias characteristics, that is, a bias value of approximately 1.0 for each category. For more details about our cloud amount forecast system, see Technical Procedures Bulletin No. 234 (National Weather Service, 1978a).

We compared the local forecasts at the 94 stations listed in Table 3.1 with a matched sample of early and final objective forecasts. The comparison was conducted for 18-, 30-, and 42-h forecasts from the 0000 GMT cycle only. The local forecasts and the surface observations used for verification were converted from opaque sky cover amount to the categories in Table 5.1. Four-category, forecast-observed contingency tables were prepared from the transformed local and best-category objective predictions. Using these tables, we computed the percent correct, Heidke skill score, and bias by category.

The results for all stations combined are shown in Table 5.2. There was only a slight difference in the scores for the guidance forecasts. Clearly,

in terms of the percent correct and skill scores, both the early and final guidance were superior to the local forecasts at all projections. Also, the bias-by-category scores of the guidance forecasts were better (closer to 1.0) than those of the local forecasts which exhibited a strong tendency to overforecast the scattered and broken categories.

The verification scores for stations in the NWS Eastern, Southern, Central, and Western Regions are given in Tables 5.3 through 5.6, respectively. In each case the difference in the performance of the early and final guidance was slight at all projections. The Western Region at the 18-h projection provided the only instance where the skill of the local forecasts exceeded that of the guidance. The bias scores for the local forecasts in the regional breakdown show that the general tendency to overforecast scattered and broken conditions occured in all regions.

The percent correct and skill scores over the past 5 cool seasons are shown in Figs. 5.1 and 5.2, respectively, for the 18- and 42-h projections. These figures show that the guidance has improved slightly with time and that the relative superiority of the guidance over the local forecasts is increasing.

Figs. 5.3 and 5.4 show the biases for categories 1 and 2, respectively, for the 18- and 42-h projections. These figures show that the bias characteristics of the guidance have remained superior to those of the local forecasts. The local forecasts underforecast the clear category (category 1) and overforecast the scattered category (category 2).

6. CEILING AND VISIBILITY

For the 1978-79 cool season, we used the ceiling and visibility prediction equations from the previous cool season. Operationally, the early guidance set is driven by LFM-II model output and uses 0300 (1500) GMT surface observations. The final guidance set uses both LFM-II and 7LPE model output and the 0600 (1800) GMT surface observations. The early guidance consists of forecasts at 6-h intervals from 6 to 48 hours after cycle time; the final guidance, from 12 to 48 hours after cycle time. For details concerning the ceiling and visibility forecast system see Technical Procedures Bulletin No. 234 (National Weather Service, 1978a).

Our ceiling and visibility verification procedure continues to track the performance of a number of scores for both subjective local forecasts and objective guidance forecasts. In each case a persistence observation (taken at 0900 GMT for the 0000 GMT cycle and at 2100 or 2200 GMT for the 1200 GMT cycle) provides a comparison. Early and final guidance forecasts are verified for both cycles at the 12-, 18-, 24-, 36-, and 48-h projections and local forecasts for 12-, 15-, and 21-h projections. The guidance and the persistence observation are usually available to the local forecaster.

We constructed six-category (Table 6.1) forecast-observed contingency tables for all the forecasts involved in the comparative verification. These categories were then used for computing several different scores: bias-by-category, percent correct, and Heidke skill score. We then collapsed the tables to two

categories (categories 1 and 2 combined versus categories 3 through 6 combined) and calculated the bias and threat score for categories 1 and 2 combined and the Heidke skill score and percent correct for the reduced tables. We have summarized the results in Tables 6.2-6.9. The Heidke skill score and bias for categories 1 and 2 combined are also given in Tables 6.10-6.17 for the last 4 cool seasons.

Tables 6.2 - 6.5 present the results for the six-category ceiling and visibility forecasts for all 94 stations (see Table 3.1) combined and Tables 6.6 -6.9 provide scores for categories 1 and 2 combined (i.e. ceilings less than 500 feet and visibilities less than 1 mile). Note that the six-category guidance was usually more skillful than persistence for projections beyond the 12-h projection (the exception was for the 18-h projection for visibility during the 1200 GMT cycle). The two-category skill scores show that the early guidance was generally poorer than persistence at the 18-h projection. The skill of local forecasts for both the six- and two-category tables exceeded that of the guidance at the 12-h projection, but never exceeded the skill of persistence (which is available to the local forecaster) for that projection. At the 15- and 21-h projections, the six-category skill of the locals was greater than that of persistence except for visibility at 15-h from the 1200 GMT cycle. The skill scores from the two-category tables show that the locals failed to beat persistence at 15- and 21-h for ceiling forecasts from the 0000 GMT cycle. Also, at the 12-h projection, final guidance, which uses the 0600 (1800) GMT surface observation, was consistently more skillful than early guidance, which uses the 0300 (1500) GMT surface observations. These results reflect the well-known decay with time in skill of forecasts made from the latest observation. We note little difference in skill between the early and final guidance at the longer projections.

The purpose of using the threshold probability technique to select the "best" category for ceiling and visibility was to improve the bias characteristics of the guidance forecasts. The bias-by-category scores show that for most projections the guidance had better bias scores than either the local or persistence forecasts. The biases of the 36-h persistence forecasts (actually a 27-h projection) should be as good as those of 12-h persistence (actually a 3-h projection). Tables 6.2 - 6.9 show this to be true.

Tables 6.10 through 6.13 present the Heidke skill scores computed from two-category contingency tables and Tables 6.14 through 6.17, the bias of categories 1 and 2 combined for the last 4 cool seasons. Figs. 6.1 - 6.7 present selected portions of these data for the 0000 GMT cycle for projections of 12, 15, 18, and 21 hours. The sample size for the 1976-77 cool season was relatively small (Feb. 8 - March 31) which may be a contributing factor to the flucuations in most of the graphs for that season. In general, these data show that the guidance bias characteristics for the difficult-to-forecast low categories have improved with the adoption of the threshold technique during the 1976-77 cool season. At the same time, the skill scores for the guidance have improved slightly over those of 1975-76, but exhibit variation from year to year.

7. MAX/MIN TEMPERATURE

The objective max/min guidance for the October 1978 through March 1979 cool season was produced by several different sets of seasonal regression equations. However, the predictand for both the early and final guidance was the local calendar day max or min valid approximately 24, 36, 48, or 60 hours after initial model time (0000 GMT or 1200 GMT). The final guidance was based on equations developed by stratifying archived 6LPE and TJ model output, station observations, and the first two harmonics of the day of the year into seasons of 3-month duration (Hammons et al., 1976). We used fall (September-November), winter (December-February), and spring (March-May) equations to produce the final guidance during the appropriate months of the 1978-79 cool season. Operationally, the equations employed output from the 7LPE and the TJ models as predictors. Station observations available 6 hours after the initial model time also were included in the final guidance equations for the first two projections.

In contrast, the early guidance system depended on new prediction equations (Carter et al., 1978) derived from LFM model output, station observations available 3 hours after initial model time, and the first two harmonics of the day of the year. This was the first cool season in which LFM-derived equations were available for 3-month seasons: fall (October-December) and winter (January-March). For the remaining projections, however, data were sufficient only for 6-month season equations. Thus, to produce the early guidance for the second, third, and fourth projections, we used cool season (October-March) equations. In operations, forecast fields from the LFM-II were employed as predictors in the LFM-derived equations. Surface observations at 3 hours after the initial model time were included as input for many of the forecast equations for the first two periods.

The objective guidance—both early and final—is available on the FOUS22 teletype bulletin while the local forecasts are on the FPUS4 teletype message. As mentioned earlier, the automated max/min forecasts refer to the 24-h interval of the local calendar day. Thus, for example, the first period objective forecasts of the max based on 0000 GMT model data (Day 1) is valid for the calendar day that starts before 1200 GMT (Day 1) and ends after 0000 GMT the following day (Day 2). However, the valid period of the local max/min forecast does not correspond to the calendar day. Rather, the local forecaster predicts a max for the 1200 to 0000 GMT interval and a min that is generally valid from 0000 to 1200 GMT. This latter time, however, is extended to 1800 GMT for forecasters in the Western Region and for many others in the western parts of the Central and Southern Regions. Hence, caution is necessary in comparing verification scores for the local forecasts and the objective guidance.

We verified local and objective forecasts from the 0000 GMT cycle, using calendar day max and min obtained from the National Climatic Center as the verifying observations. Mean algebraic error (forecast minus observed temperature), mean absolute error, and the number of absolute errors greater than 10°F were computed for 87 stations (Table 2.1) in the conterminous United States. Four forecast projections of approximately 24 (max), 36 (min),

48 (max), and 60 (min) hours after 0000 GMT were verified.

Verification results are shown in Table 7.1 for all stations combined. For the two projections of the max, the early guidance had a mean algebraic error of $0.0^{\circ}F$ while the final guidance tended towards a cold bias (algebraic error $< 0.0^{\circ}F$). In contrast, both the early and final min guidance were too warm (algebraic error $> 0.0^{\circ}F$). Note that the local forecasts exhibited the same type of algebraic errors as the MOS guidance; for all projections, however, the local bias was more pronounced.

At all projections but the last, the early guidance was more accurate than the final in terms of mean absolute error. This was a dramatic reversal from the 1977-78 cool season (Gilhousen et al., 1979) when the final was consistently better than the early guidance. Even in the last projection, the early guidance was only 0.1°F less accurate in mean absolute error than the final. We believe that the new LFM-derived equations (Carter et al., 1978) were the primary cause for the improvement in the early guidance. Unfortunately, there was also a serious error in the 7LPE-based TJ model which contaminated the final guidance during December, January, and February. We're unable to estimate the amount of deterioration that this caused. Note that there were only small differences in the accuracy of the local forecasts and the early guidance. While the local forecasts improved on the early guidance by 0.1°F mean absolute error in three of the four projections, for the 36-h min the early guidance actually had fewer large absolute errors (> 10.0°F) than the local forecasters.

It is of some interest to compare the accuracy of this year's forecasts with that of the 1977-78 cool season (Gilhousen et al., 1979). For the max forecasts, the local and the early guidance for the 1978-79 season had nearly the same mean absolute errors as the local and final guidance of last season. In contrast, however, this year's local and early forecasts of the min were noticeably (0.3°F mean absolute error) less accurate than were the locals and final guidance for last season. Natural variability in meteorological conditions and, consequently, in the difficulty of forecasting the min would seem to explain this deterioration. We also examined verification scores for the Eastern, Southern, Central, and Western Regions (Tables 7.2 - 7.5, respectively). The improvement of the early guidance relative to the final guidance was generally evident on a regional basis. For both the Eastern and Southern Regions, in terms of mean absolute error, the early guidance was as accurate as, or more accurate than, the final guidance for all four projections. In the Central Region, the mean absolute error of the early guidance was less than that of the final guidance at all projections but the last. Finally, even in the Western Region, the early guidance was as accurate as the final for the 36- and 48-h projections. For the remaining two projections, the differences between the early and final guidance were small. This contrasts sharply with the 1977-78 cool season (Gilhousen et al., 1979) when the early guidance in the Western Region was quite inferior to the final guidance at all projections. Finally, both sets of objective guidance had a warm bias in the Western Region at all projections.

The accuracy of the local forecasts relative to the objective guidance also varied from region to region. In the Eastern and Southern Regions, there were only small differences in mean absolute error between the early guidance

and the local forecasts. In contrast, on the basis of mean absolute errors, forecasters in the Central Region improved over the early guidance in all projections, though the margins were generally small. Finally, the Western Region forecasters were more accurate than either the early or final guidance for both the 24- and 48-h max. For the 36-h min, however, the early guidance had a smaller mean absolute error (by $0.2^{\circ}F$) than the local forecasts.

The mean absolute errors (0000 GMT cycle only) during the last 8 cool seasons are given in Fig. 7.1 for the max forecasts. For both the local forecasts and the final guidance, there has been an overall increase in accuracy since the 1971-72 cool season. The greatest improvement in the objective guidance occurred in the 1973-74 cool season when we implemented the first MOS forecast equations which were based on 6-month seasons (Klein and Hammons, 1975). Note, too, that the difference in skill between the local forecasts and the final guidance has remained relatively constant since the 1973-74 cool season; however, the introduction of LFM-derived early guidance in the 1978-79 cool season narrowed the gap between the local forecasts and the guidance.

An analagous time series is shown in Fig. 7.2 for the min forecasts. Verifications for the 60-h projection are available only for the last 2 seasons. For the 36-h projection, there has been an overall improvement in the objective guidance since the 1971-72 cool season. It is difficult to discern a corresponding trend in the accuracy of the local forecasts. As we mentioned earlier, natural variability and the difficulty of predicting the min is important in understanding these curves. Unlike the max, however, the objective min guidance showed its greatest improvement in the 1975-76 cool season when we switched from 6-month to 3-month MOS forecast equations (Hammons et al., 1976). Note that for both the 36- and 60-h projections, the local forecasters and the objective guidance have approximately the same level of skill.

8. CONCLUSIONS

TDL's aviation/public weather guidance forecasts, as measured by the various scores used in this ongoing verification program, continue to compare favorably with local forecasts produced at WSFO's. For PoP forecasts, the NWS forecasters outperformed the early guidance only in the first period. Also, early guidance PoP forecasts continued to be more accurate than the final for both the second and third periods (except the third period in the Western Region). Finally, "long term" trends show that both guidance and local PoP forecasts are improving, with the guidance improving at a slightly faster rate than the locals in the first period.

There was a major change in the precipitation type forecasting system with PoPT forecasts replacing PoF in the early guidance. Overall, in bias, percent correct, and skill score the guidance continued to perform as well as or slightly better than the locals at all projections. The skill of both the guidance and local forecasts of frozen precipitation generally exhibited a downward trend over the past two years, except that the skill of the 18-h early guidance remained level in the face of this general downward trend.

For the surface wind forecasts, the performance of the MOS guidance (as measured by various scores) for all stations combined continued to exceed that of the locals. Also, the early guidance outperformed the final guidance.

However, on a regional basis, the results showed the Western Region fore-casters were able to improve on the guidance in many cases. Trends show that the MAE for direction has improved steadily, while MAE for speed jumped in the 1975-76 cool season due to the use of the inflation procedure. This technique, however, did produce better bias characteristics for the guidance. Five-category wind speed results show that the skill of the local forecasts was approximately equal to the skill of the final guidance. In contrast, the early guidance was considerably better than the local forecasts. We note a decline in the skill of both the two-category and five-category during the past two cool seasons. However, overall, the skill of the guidance still exceeded that of the locals.

The various performance measures show that both the early and final opaque sky cover guidance forecasts were more accurate than the local forecasts. Early and final guidance performed equally well at the 3 projections examined. The bias characteristics of the guidance were better than the local forecasts which tended to overforecast scattered and broken conditions. The trend showed an improvement in the guidance at both the 18- and 42-h projections.

A direct comparison between local, MOS guidance, and persistence forecasts for ceiling and visibility was possible only at the 12-h projection. At this projection, the local forecasts were more skillful than the guidance, but in both the two- and six-category comparison, persistence was more skillful than the local forecasts. The long term trend generally shows a disappointing decrease of skill in forecasting low conditions for both early and final guidance, especially pronounced at the 36- and 48-h projections. The bias characteristics of the guidance continued to be generally better than those of the locals in the lower categories where the local forecasts underforecast the occurrence of these events.

Finally, for max/min temperature, new early guidance equations were implemented during the 1978-79 cool season. As a result, the early max/min guidance was more accurate than the final at the first three projections. For the 60-h min forecast, however, the final guidance had lower mean absolute errors. These trends were generally evident in the four NWS regions discussed in this report. Though comparisons between the objective guidance and the local forecasts of the max/min are difficult to make because of the different forecast periods involved, we found that the local forecasts of the max valid approximately 24- and 48-h after 0000 GMT were slightly more accurate in mean absolute error than the objective guidance. The min is particularly difficult to predict during the cool season, and in fact, there was little or no difference in mean absolute error between the guidance and local forecasts for the 36- and 60-h min.

ACKNOWLEDGMENTS

We wish to thank the Technical Procedures Branch of the Office of Meteorology and Oceanography for providing us with the local forecasts, and especially Gerry Cobb of the Branch who processed data. We are also grateful to Harry Akens, Fred Marshall, and Bill Herrmann of the Techniques Development Laboratory for assistance in archiving the guidance forecasts and error-checking the observations used for verification. Additional thanks are extended to

Mary B. Battle, Mercedes Bakon, and Nancy Harrison for typing the text and the many tables shown in this report.

REFERENCES

- Bocchieri, J. R., 1979: A new operational system for forecasting precipitation type. Mon. Wea. Rev., 107, 637-649.
- ______, and H. R. Glahn, 1976: Verification and further development of an operational model for forecasting the probability of frozen precipitation. Mon. Wea. Rev., 104, 691-701.
- Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 1-3.
- Carter, G. M., and G. W. Hollenbaugh, 1975: Comparative verification of local and guidance surface wind forecasts—No. 3. <u>TDL Office Note</u> 75-8, National Weather Service, NOAA, U.S. Dept. of Commerce, 13 pp.
- , A. L. Forst, W. H. Klein, and J. P. Dallavalle, 1978: Improved automated forecasts of maximum/minimum and 3-hourly temperatures. Preprints Conference on Weather Forecasting and Analysis and Aviation Meteorology, October 1978, Silver Spring, Md., Amer. Meteor. Soc., 171-178.
- Gilhousen, D. G., J. R. Bocchieri, G. M. Carter, J. P. Dallavalle, K. F. Hebenstreit, G. W. Hollenbaugh, J. E. Janowiak, and D. J. Vercelli, 1979: Comparative verification of guidance and local aviation/public weather forecasts—No. 5. <u>TDL Office Note</u> 79-2, National Weather Service, NOAA, U.S. Dept. of Commerce, 73 pp.
- Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. <u>J. Appl. Meteor</u>., 11, 1203-1211.
- , and J. R. Bocchieri, 1975: Objective estimation of the conditional probability of frozen precipitation. Mon. Wea. Rev., 103, 3-15.
- Hammons, G. A., J. P. Dallavalle, and W. H. Klein, 1976: Automated temperature guidance based on three-month seasons. Mon. Wea. Rev., 104, 1557-1564.
- Jorgensen, D. L., 1967: Climatological probabilities of precipitation for the conterminous United States. ESSA Tech. Report WB-5, 60 pp.
- Klein, W. H., B. M. Lewis, and I. Enger, 1959: Objective prediction of five-day mean temperatures during winter. <u>J. Meteor</u>., 16, 672-682.
- , and G. A. Hammons, 1975: Maximum/minimum temperature forecasts based on model output statistics. Mon. Wea. Rev., 103, 796-806.
- National Weather Service, 1971: The Limited-area Fine Mesh (LFM) model.

 NWS Technical Procedures Bulletin No. 67, National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce, 11 pp.

- ______, 1973: Combined aviation/public weather forecast verification. NWS Operations Manual, Chapter C-73, National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce, 15 pp.
- , 1976: Operational probability of frozen precipitation (PoF) forecasts based on model output statistics (MOS). NWS Technical Procedures

 Bulletin No. 170, National Oceanic and Atmospheric Administration, U.S.

 Dept. of Commerce, 8 pp.
- , 1977b: The 7LPE model. <u>NWS Technical Procedures Bulletin</u> No. 218, National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce, 14 pp.
- , 1978a: The use of model output statistics for predicting ceiling, visibility, and cloud amount. NWS Technical Procedures Bulletin No. 234, National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce, 14 pp.
- , 1978b: Operational probability of precipitation type forecasts based on model output statistics. NWS Technical Procedures Bulletin No. 243, National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce, 13 pp.
- , 1978c: The use of model output statistics for predicting probability of precipitation. <u>NWS Technical Procedures Bulletin</u> No. 244, National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce, 13 pp.
- , 1979: The use of model output statistics for predicting surface wind.

 NWS Technical Procedures Bulletin No. 271, National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce, 11 pp.
- Panofsky, H. A., and G. W. Brier, 1965: Some applications of statistics to meteorology. Pennsylvania State University, University Park, Pa., 224 pp.
- Reap, R. M., 1972: An operational three-dimensional trajectory model. <u>J. Appl. Meteor</u>., 11, 1193-1202.
- Shuman, F. G., and J. B. Hovermale, 1968: An operational six-layer primitive equation model. J. Appl. Meteor., 7, 525-547.

Table 2.1. Eighty-seven stations used for comparative verification of guidance and local PoP and max/min temperature forecasts.

AVL	Asheville, North Carolina	DFW	Ft. Worth, Texas
RDU	Raleigh-Durham, North Carolina	MAL	Jackson, Mississippi
ORF	Norfolk, Virginia	MIA	Miami, Florida
PHL	Philadelphia, Pennsylvania	ORL	Orlando, Florida
RIC	Richmond, Virginia	TPA	Tampa, Florida
DCA	Washington, D.C.	MSY	New Orleans, Louisiana
CRW	Charleston, West Virginia	BRO	Brownsville, Texas
CHS	Charleston, South Carolina .	SAT	San Antonio, Texas
CLT	Charlotte, North Carolina	IAH	Houston, Texas
CAE	Columbia, South Carolina	ATL	Atlanta, Georgia
LGA	New York (Laguardia), New York	BHM	Birmingham, Alabama
BUF	Buffalo, New York	JAX	Jacksonville, Florida
ALB	Albany, New York	MEM	Memphis, Tennessee
BOS	Boston, Massachusetts	SHV	Shreveport, Louisiana
BDL	Hartford, Connecticut	AUS	Austin, Texas
BTV	Burlington, Vermont	LIT	Little Rock, Arkansas
PWM	Portland, Maine	OKC	Oklahoma City, Oklahoma
PVD	Providence, Rhode Island	TUL	Tulsa, Oklahoma
SYR	Syracuse, New York	MAF	Midland, Tamas
CLE	Cleveland, Ohio	ELP	El Paso, Texas
CMH	Columbus, Ohio	AMA	Amarillo, Texas
BWI	Baltimore, Maryland	ABQ	Albuquerque, New Mexico
ACY	Atlantic City, New Jersey	FLG	Flagstaff, Arizona
CVG	Cincinnatti, Ohio	TUS	Tucson, Arizona
DAY	Dayton, Ohio	LAS	Las Vegas, Nevada
PIT	Pittsburgh, Pennsylvania	LAX	Los Angeles, California
ICT	Wichita, Kansas	RNO	Reno, Nevada
MCI	Kansas City, Missouri	SAN	San Diego, California
STL	St. Louis, Missouri	SFO	San Francisco, California
MDW.		BIL	Billings, Montana
MKE	Milwaukee, Wisconsin	SLC	Salt Lake City, Utah
SSM	·	BOI	Boise, Idaho
DLH	Duluth, Minnesota	HLN	Helena, Montana
FAR	Fargo, North Dakota	GEG	
MSP	Minneapolis, Minnesota	PDX	
DSM	Des Moines, Iowa	SEA	Seattle-Tacoma, Washington
OMA	Omaha, Nebraska	CPR	
. FSD	Sioux Falls, South Dakota	RAP	Rapid City, South Dakota
DEN	Denver, Colorado	IND	Indianapolis, Indiana
BIS	Bismarck, North Dakota	SDF	Louisville, Kentucky
CYS	Cheyenne, Wyoming	DTW	· _
LBF	North Platte, Nebraska	- PHX	Phoenix, Arizona
BNA		GTF	Great Falls, Montana
TOP	Topeka, Kansas	511	·
101	Lopena, Manual		

Comparative verification of early and final guidance and local PoP forecasts for 87 stations, of Cases Number 13953 13906 Over Climatology Improvement 36.3 31.0 34.8 43.3 Improvement Over Guidance (%) -0.2^{1} (5.6) 4.0 Score .1069 1093 Brier .0916 Early/Final Local Forecast Type of Final Early 0000 CMT cycle. Projection (1st period) (2nd period) Table 2.2 12-24 h 24-36 h

This is the percent improvement of the locals over the early guidance; the figure in parentheses is the percent improvement of the locals over the final guidance.

14038

29.6 25.3 29.6

 0.0^{1} (5.8)

1146 .1147

> Early Final Local

Local

(3rd period)

36-48 h

Same as Table 2.2 except for 26 stations in the Eastern Region. Table 2.3

Projection	Type of Forecast	Brier Score	Improvement Over Guldance (Z)	Improvement Over Climatology (7)	Number of Cases
12-24 h (1st period)	Early/Final Local	.0949	0.1	49.0	4015
24-36 h (2nd period)	Early Final Local	.1053 .1197 .1087	-3.3 ¹ (9.2)	43.8 36.1 41.9	4041
36-48 h (3rd period)	Early Final Local	.1196 .1316 .1203	-0.6 ¹ (8.6)	36.9 30.5 36.5	4059

l This is the percent improvement of the locals over the early guidance; the figure in parentheses is the percent improvement of the locals over the final guidance.

Same as Table 2.2 except for 23 stations in the Southern Region. Table 2.4

			.a	Tuementorum.	Number
Projection	Type of Forecast	Brier Score	Improvement Over Guidance (%)	Over Climatology (7)	of Cases
12-24 h (1st period)	Early/Final Local	.0863	7.8	38.8 43.6	3699
24-36 h (2nd period)	Early Final Local	.1045	-3.8 ¹ (4.5)	31.3 24.9 28.3	3708
36-48 h (3rd period)	Early Final Local	.1059	-3.0 ¹ (5.7)	25.6 18.8 23.4	3727

:

I This is the percent improvement of the locals over the early guidance; the figure in parentheses is the percent improvement of the locals over the final guidance.

Same as Table 2.2 except for 22 stations in the Central Region. Table 2.5

Projection	Type of Forecast	Brier Score	Improvement Over Guidance (%)	Improvement Num Over Climatology of C	Number of Cases
12-24 h (1sc period)	Early/Final Local	.0894	1.3	44.5	3655
24-36 h (2nd period)	Early Final Local	.1153 .1232 .1187	-2.9 ¹ (3.7)	35.7 31.2 33.7	, ,
36-48 h (3rd period)	Early Final Local	.1165 .1227 .1174	-0.8 ¹ (4.3)	28.5 24.7 27.9	3678

l This is the percent improvement of the locals over the early guidance; the figure in parentheses is the percent improvement of the locals over the final guidance.

Same as Table 2.2 except for 16 stations in the Western Region. Table 2.6

Number of Cases	2537	2544	2574
Improvement Over Climatology (7)	39.0 43.9	32.5 31.5 34.5	25.1 27.6 29.5
Improvement Over Guidance (%)	8.1	3.3 ¹ (4.4)	5.7 ¹ (2.7)
Brier Score	.0973	.1010 .1022 .0977	.1168
Type of Forecast	Early/Final Local	Early Final Local	Early Final Local
Projection	12-24 h (1sc períod)	24-36 h (2nd period)	36-48 h (3rd period)

This is the percent improvement of the locals over the early guidance; the figure in parentheses is the percent improvement of the locals over the final guidance.

Table 3.1. Sixty-two stations used for comparative verification of guidance and local precipitation type forecasts.

-		
PWM Portland, Maine BTV Burlington, Vermont BOS Boston, Massachusetts PVD Providence, Rhode Island	OKC ABQ GTF DTW	Oklahoma City, Oklahoma Albuquerque, New Mexico Great Falls, Montana Detroit, Michigan
BUF Buffalo, New York	IND	Indianapolis, Indiana
SYR Syracuse, New York	SDF	Louisville, Kentucky
ALB Albany, New York	MKE	Milwaukee, Wisconsin
PIT Pittsburgh, Pennsylvania .	STL	St. Louis, Missouri
PHL Philadelphia, Pennsylvania	MCI	Kansas City, Missouri
CLE Cleveland, Ohio	TOP	Topeka, Kansas
CMH Columbus, Ohio	DEN	Denver, Colorado
CRW Charleston, West Virginia	CYS	Cheyenne, Wyoming
DCA Washington, D.C.	BIS	Bismarck, North Dakota
ORF Norfolk, Virginia	FAR	Fargo, North Dakota
RDU Raleigh-Durham, North Carolina	RAP	Rapid City, South Dakota
CLT Charlotte, North Carolina	FSD	Sioux Falls, South Dakota
CAE Columbia, South Carolina	OMA	Omaha, Nebraska
ATL Atlanta, Georgia	MSP	Minneapolis, Minnesota
MIA Miami, Florida	DSM	Des Moines, Iowa
JAX Jacksonville, Florida	FLG	Flagstaff, Arizona
BHM Birmingham, Alabama	PHX	Phoenix, Arizona
MEM Memphis, Tennessee	SLC	Salt Lake City, Utah
JAN Jackson, Mississippi	LAS	Las Vegas, Nevada
MSY New Orleans, Louisiana	RNO	Reno, Nevada
SHV Shreveport, Louisiana	SAN	San Diego, California
IAH Houston, Texas	LAX	Los Angeles, California
SAT San Antonio, Texas	SFO	San Francisco, California
DFW Fort Worth, Texas	PDX	Portland, Oregon
ELP El Paso, Texas	SEA	Seattle (Tacoma), Washington
LIT Little Rock, Arkansas	GEG	Spokane, Washington
TUL Tulsa, Oklahoma	BOI	Boise, Idaho

Table 3.2. Comparative verification of early PoPT guidance and local forecasts by NWS Region, 0000 GMT cycle. Only cases when local PoP was \geq 30% are included.

Projection	Region	Type of		Bias		Percent	Skill	Number of
(h)		Fcst.	Snow	Freezing Rain	Rain	Correct	Score	Cases
	Eastern	Early Local	1.07 1.03		.94 .97	91 90	.82 .81	373
	Southern	Early Local	.72 .60		1.03 1.04	94 93	.78 .73	164
18	Central	Early Local	1.04		.98 .93	89 85	.77 .70	255
	Western	Early Local	.95		1.04	91 90	.83 .79	162
	All Stations	Early Local	1.02	1.00 1.38	.99 1.00	91 89	.82 .79	954
	Eastern	Early Local	1.08		.94 .99	85 86	.74 .73	. 349
	Southern	Early Local	1.08 1.23		1.00 .98	89 88	.50	155
30	Central	Early Local	1.03 1.11		.89 .86	86 84	.73	282
	Western	Early Local	1.04 1.09		.98	91 87	.82	148
	All Stations	Early Local	1.05 1.09	i.11 .68	.95 .96	87 86	.76	934
	Eastern	Early Local	1.11		.84 .93	83 86	.68 .72	353
•	Southern	Early Local	.94		1.02	92 87	.67	. 135
42	Central	Early Local	1.10 1.06		.85 .98	85 85	.69 .69	240
	Western	Early Local	1.13 1.08		.93	89 · 90	.77 .79	139
	All Stations	Early Local	1.10	1.50 .55	.90 .98	86 86	.73 .73	867

Table 3.3 Comparative verification of early PoPT guidance and local forecasts, 0000 GMT cycle. Only those cases in which the locals and guidance differed, and the local PoP was \geq 30% were included.

Projection (h)	Type of Forecast	Percent Correct	Number of Cases
18	Early Local	56 38	90
30	Early Local	51 42	104
42	Early Local	56 38	90

Table 3.4 Comparative verification of early PoPT guidance, final PoF guidance, and local forecasts by NWS Region, 0000 GMT cycle. Only cases when local PoP was $\geq 30\%$ were included.

rojection	Region	Type of Fcst.	Bi		Percent	Skill	Number of
(h)		rest.	Snow	Rain	Correct	Score,	Cases
		F1-		0.5		06	
		Early	1.07	.95	93	. 86	272
	Eastern	Final	1.14	.90	92	. 84	373
		Local	1.03	.98	91	.83	
		Early	.72	1.05	96	.81	
	Southern	Final	.80	1.04	91	.61	164
		Local	.60	1.07	94	.72	
18		N 1	1.04	.93	91	.81	
	0	Early	1.12	.80	89	.75	255 .
	Central	Final			88	.74	255
•	•	Local	1.03	.95	88	. / 4	
		Early	.95	1.05	93	.85	10/12/2
	Western	Final	1.04	.96	92	.84	162
		Local	.90	1.09	.90	.80	
	All	Early	1.02	.99	93	.86	
	Stations	Final	1.09	.93	91	.82	954
		Local	.98	1.02	91	.81	
		Early	1.08	.94	89	.78	
	Eastern	Final	1.11	.92	89	.77	349
	Lascern	Local	1.05	.97	88	.76	
		Early '	1.00	1.00	95	.66	
	Southern	Final	1.08	.99	94	.64	155
•	bodenern	Local	1.23	.98	94	.66	
		Early	1.03	.96	88 , .	.74	
30	a 1		1.11	.84	89	.76	282
30	Central	Final Local	1.11	.83	86	.71	
		Early	1.04	.98	. 92	.83	1,14
	Western	Final	.96	1.02	88	.74	148
	western	Local	1.09	.95	87	.73	Fa
`				•		70	
	433	Early	1.05	.96 .94	90	.79	934
	All	Final	1.09	.94	88	.76	
•	Stations	Local	1.09	. 74	00	.70	
		Early	1.11	.92	88	77	650
	Eastern	Final	1.24	.83	87	.74	353
		Local	1.11	.92	88	.75	
		Early "	.94	1.01	95	.76	
	Southern .	Final	.82	1.03	93	.67	135
		Local	.65	1.05	91	.52	
		Early	1.10	.84	87	.72	2000-200
. 42 .	Central	Final	1.20	.70	87	,72	240
	and the same of th	Local	1.06	.92	86	.70	
		Early	1.13	.92	91	.81	• • •
	Western	Final	1.11	.93	91	.82	139
	. 7	Local	1.08	.95	91	.82	
•		Early	1.10	02	00	.79	
	A11 '	Final	1.19	.92	89 89	.79	867
	Stations	Local	1.06	.96	88	.76	301
					00		

Table 4.1. Ninety-four stations used for comparative verification of guidance and local surface wind, sky cover, ceiling, and visibility forecasts.

PWM	Portland, Maine	GTF	Great Falls, Montana
BTV		TCC	inditedita
CON	,	APN	ich lickich
BOS		DTW	1 ,
PVD	,	SBN	, 5.1.26411
BUF	,	IND	Titulatia
SYR		LEX	really indialia
ALB	Albany, New York		b, itemedaky
JFK		SDF	Louisville, Kentucky
EWR	(TOTAL	MSN	Madison, Wisconsin
ERI	Erie, Pennsylvania	MKE	Milwaukee, Wisconsin
IPT	Williamsport, Pennsylvania	ORD	Chicago (O'Hare), Illinois
PIT	Pittsburgh, Pennsylvania	SPI	Springfield, Illinois
PHL	o-,	STL	St. Louis, Missouri
CLE	i - j - ciiio j z vanza	MCI	Kansas City, Missouri
CMH	Columbus, Ohio	TOP	Topeka, Kansas
HTS		DDC	Dodge City, Kansas
CRW	Huntington, West Virginia	DEN	Denver, Colorado
DCA	Charleston, West Virginia	GJT	Grand Junction, Colorado
ORF	Washington, D.C.	SHR	Sheridan, Wyoming
RDU	Norfolk, Virginia	CYS	Cheyenne, Wyoming .
CLT	Raleigh-Durham, North Carolina	BIS	Bismarck, North Dakota
GSP	Charlotte, North Carolina	FAR	Fargo, North Dakota
	Greenville, South Carolina	RAP	Rapid City, South Dakota
CAE	Columbia, South Carolina	FSD	Sioux Falls, South Dakota
ATL	Atlanta, Georgia	\mathtt{BFF}	Scottsbluff, Nebraska
SAV	Savannah, Georgia	OMA	Omaha, Nebraska
MIA	Miami, Florida	MSP	Minneapolis, Minnesota
JAX	Jacksonville, Florida	DSM	Des Moines, Iowa
BHM	Birmingham, Alabama	BRL	Burlington, Iowa
MOB	Mobile, Alabama	INL	International Falls, Minnesota
TYS	Knoxville, Tennessee	FLG	Flagstaff, Arizona
MEM	Memphis, Tennessee	PHX	Phoenix, Arizona
MEI	Meridian, Mississippi	CDC	Cedar City, Utah
JAN	Jackson, Mississippi	SLC	Salt Lake City, Utah
MSY	New Orleans, Louisiana.	LAS	Las Vegas, Nevada
SHV	Shreveport, Louisiana	RNO	Reno, Nevada
IAH	Houston, Texas	SAN	San Diego, California
SAT:	, 20.100	LAX	Los Angeles, California
DFW	Dallas-Fort Worth, Texas	FAT	Fresno, California
ABI	Abilene, Texas	SFO	San Francisco, California
LBB	Lubbock, Texas	PDX .	Portland, Oregon
ELP	El Paso, Texas		Pendleton, Oregon
LIT	Little Rock, Arkansas		Seattle (Tacoma), Washington
FSM	Fort Smith, Arkansas		Spokane, Washington
TUL	Tulsa, Oklahoma		Boise, Idaho
OKC	Oklahoma City, Oklahoma		Pocatello, Idaho
ABQ	Albuquerque, New Mexico		Missoula, Montana

Table 4.2. Comparative verification of early and final guidance and local surface wind forecasts for 94 stations, 0000 GMT cycle.

		5	lı. O	SUSTO		13403			13070				12980		
				(110. 0BS)	0.70 0.20	0.65 0.20	0.65 1.00 0.70 (172) (23) (10)	0.47 0.0 0.0	0.38 0.50	0.56 1.00 (16) (2)		0.89 0,50	0.79 0.17	0.87 1.27 0.97 0.57 0.34 0.42 0.50 (5135) (4513) (2372) (776) (159) (19) (6)	
			CATE	(NO.			1.0	0.0		0.5			0.7	0.7	
	เม่	O. CBS	CATS	(NO.	0.59	0.55	0.65		0.49	0.60 (0.75	09.0	0.34	
	TABL	ST/N		(NO.	0.60 0.59	09.0	0.80 (811)	0.50	0.63	0.69		0.82	0.71	0.57	
	ENCY	10. FC	CATE	(NO.	0.30	0.83	1.18 (2412)	0.85	0.78	0.99	,	96.0	0.74	0.97	
	CONTINGENCY TABLE	BIAS-NO, FCST/NO, CBS	CAT2 CAT3 CAT4	(NO. 088)	96.0	0.97	1.19 (4635)	1.00	0.91	1.26 0.99 (3610) (1387)		1.04 1.02	0.97	1.27	
SPEED	00		CATI	(NO. (1.20 0.96 0.80	1.18	0.80 1.19 1.18 0.80 (5340) (4635) (2412) (811)	1.06	1.10	0.90 1.26 0.99 0.69 (7623) (3610) (1387) (375)		1.04	1.20	0.87	
		TWECKE		CASES SCORE CORRECT	55	54	51	63	62	57	ž.	65	47	95	
		-0	SKILL	SCOREC	0.32	0.30	0.30	0.38	0.31	0.27		0.25	0.21	0.20	
-	9	<u>.</u>	OF	CASES		5584	•		3198				5095-		
	144	MEDIN	OBS	(KTS)		12.9			11.6		, ,		12.7 12.4		100
	1	MEAN MEAN MEAN	FCST	(KTS)	12.6	12.7	13.7	12.1	12.1	12.7	,	13.4	12.7	13.0	,
	1	SEAN	ERROR	(KTS)	3.2	3.4	3.5	3.6	3.8	3.9		3.9	4.0	4.0	
TION		Š	CF.	CASES		5542			3160				5040		
DIRECTION		NT III	FAROR	(DEG)	24	26.	28	30	33	36		33	37	41	
	TYPE	u		FCST	EARLY	7147	LOCAL	FARLY	JKN1.	LOCAL		EARLY	FINAL	LOCAL	
	FCST		3	(HOURS)		0			000			٠	42		

Table 4.3. Contingency tables for early and final guidance and local surface wind speed forecasts for 94 stations, 0000 GMT cycle.

		:	52.55	17	63	.0	9) 9)	, fi	v	0 9 31		:-4	00	7	11	0	13h 12 j	6.7	Ģ	C8971		۴.	500	27 27 27	2372	176	159	2	νο	12980					
		7		o	O	,w.1		0	Û	m			Ġ	0	0	e)	-4	o	9			1~	o	ာ	cı.	ဝ	0	,	0	m					
		.0	M	C1	7	19	(1)	~	1	7.		٠.	514	Ō	¢1	Ō	**	¢1	0	5		·o	0	***	'n	.01	m	0	Ç	တ					
ıste		5	Ś	57	: 7	3,5	1	e-i	,*	617		S	٠,٢	Ø	70	13	-7	છ	٠,	96		ς.	٣	'n	33	15	7	~1	-	\$5					
ece	ż	-7	12	110	10	187	3	O,	***	(0) (1)		-7	36	111	207	9) •T	45.	√r	7	550	႕	-7	5.0	104	157	104	38	7	2	445					
Forecasts	KINTE	٣	327	7;3	62.5	318	55	~s	٥I	2278	FILE	m	242	555	.7	290	90 77	'n		1755	LOCAL	m	302	815	756	313	52	m	61	2303					
42-h		63	1432	2027	914	183	8	c1	0	4589		63	1310	1825	586	235	ス	~1	,~4	4391		М	1972	2325	1094	275	20	φ	-	5724					
7		-	3321	3636	34.13	20	Ŋ	0	~•	5335		1	3351	2002	523	73	12	0	0	6172		~	27.65	1262	338	89	თ	me	0	143					
			.	73	m	4	S	9	7	ęн			-	8	m	4	'n	9	~	[-			~	7	3	4	in	vo	7						
•						OBS										SZO										OBS									
		ы	7623	3610	1387	375	57	16	7	13070		ï	7623	3610	1337	375	57	36	7	13070		æ	7623	3610	1387	375	57	16	7	13070					
		1	0	S	0	0	0	0	0	0		7	0	0	0	0	0	٦	0	7		7	0		-	0	0	0	0	7					
rs		5	0	0 0	7 0	8	0 9	3 0	0	27 0		6	0	1 0	10 0	φ (n	9	1 2	1 0	28 6		2	0	N N	8	10 3	6 2	1 0	0 0	34 9					
Forecasts		4	S	35	29	61	15	S	7	189 2		4	83	53	86	63	6	.1	0	238		٧.	25	55	11	6.8	7	ιO	-	258					
ore	EARLY	ო	148	615	8 1 7	161	26	5	Ģ	1 7711	FINAL	м	154	411	368	128	21	S		1088	LOCAL	m	283	512	707	147	18		-	1369 2					
30-h		2	1314	1553	626	119	ø	7		3623 1		23	1138	1385	617	141	17	2	0	3300		. 4	2051	1700	599	112	15	7	0	4545 1					
30			6156 1	1600 1	269	56	7		0	8054 3		~4	6313 · 1138	1760	306	26	ന	m	0	6058		~	5260 2	1325 1	230	35	7	-~	0	6853 .4					
•			1 6	2	e	4	v	9	7	e E								~	~	6	4	5	9	~	£			5.	2 1	'n	4	S	·Ω	7	T 6
						088										Sac		. *					٠		· .	065									
		⊱ -1	5340	5697	2412	811	172	ຄ	10	13403		Ħ	5340	4635	2412	811	172	23	10	13403		H	5340	4635	2412	311	172	23	10	E.					
		7	0	۵	0	-1	1	0	0	84 .		. 1	0	0	0	0		0	, m,	61	•	7	0	0	М		-	r-4	 4	~					
rn.		′ο	ی	٠	·**	m	.si	۰۲	.7	3 16		Φ.	0 1	0 5	20 2	33.	22 6	5 6	3	95 15		9	0	61	ω .	 	11		m 	. 23					
ıst		~	_		17	38	32		~1	103		Υ	m	S				7	m			Ś		01	30	95	22	- -		111					
Ge C.	7.7	4	9.	7.3 87	165	*8°	19	Ġ,	64	527	FIRST	7) 13	99 9	9 164	5 173	65 6	6	0	\$85	ïs	-1	23	102	212	231	65	10	2	659					
For	EARLY	'n	114	534	9) 54	378	56	-71	ا ن م	1927	Ë	m	150	266	672	5%	67			2014	18001	æ	329	Ω, Ω, Ω,	1058	334	58	v	9	2839					
18-h Forecasts		81	1055	5665	1582	33	15	7	* 4	65.77		7	1133	2093	1366	197	7.1			4510		8	1920	2504	937	123	12	~	0	2497					
r1			1917	575	333	.4	67	ပ	133	6432			1027	5	311	0	1-3		Û	6262			5552	1933	159	7,	m	0	~	4277					
			~	81	113	1.	1/3	'n	t-·	14				44	.~	9	υY	ND.	r~	έ٩				14	٠,٠	*1 W	Ġ	Φ	7	14					
						१ व ०										ŝ										250									

Table 4.4. Same as Table 4.2 except for 24 stations in the Eastern Region.

	And and the second second	S		の 回 の て つ			3267		•	3222			3215		
SPEED	CONTINGENCY TABLE	EIAS-NO. FCST/NO.CBS	CATI CAT2 CAT3 CAT4 CAT5 CAT6 CAT7	T (NO. (NO. (NO. (NO. (NO. (NO. (NO. (NO.		0.98 0.84 0.78 0.91 0.40	1.27 0.92 0.85 0.68 0.56 0.60 *	0.80 1.07 1.24 0.84 1.11 1.60 *** (1097) (1243) (658) (219) (45) (5) (0)	1.10 0.94 0.88 0.54 0.19 0.0 *	1.11 0.90 0.82 0.71 0.56 3.00 *	0.88 1.18 1.14 0.98 1.31 6.00 ** (1803) (894) (392) (114) (16) (1) (0)	1.16 0.92 0.94 0.88 0.83 1.00 *	1.34 0.88 0.78 0.78 0.54 1.00 **	0.88 1.10 1.09 0.81 0.61 1.25 ###	
		PERCENT	FCST	(KTS) CASES SCORE CORRECT	c L	ე (ე ს	2.5	67	64	61	57	65	77	43	
			SKILL	SCORE			0.30	0.27	0.37	0.32	0.30	0.26	0.18	0.19	
	Q.		ь. 6	CASES		5	1582			929			1420		•
	LÆEAN		OBS			,	13.0			11.9	. '		12.7	· ,	Ŷ.
	MEAN		FCST	(KTS)	-	0.00	17.8	14.1	12.3	12.5	13.6	13.7	13.0	13.7	٧
	NEAN	ABS.	ERROR	(ктs)	-	; ;	3.1	5.	3.3	3.7	4.0	3.7	3.9	-4:1	
TION	NO.		유	(DEG) CASES		- (9/51			919			1407	**********	
DIRECTION	REAN	ABS	ERROR		ų		97	53	 29	31	35	31	33	39	
	TYPE	07	100 Ja) }	> 0 0		.J	LOCAL	 923LY	Firal	LOCAL	EARLY	FINAL	TROOT	
	FOST	PROJ				(1	0		 	30	POTENTIAL SERVICE		۵. دا		

* This category was neither forecast nor observed.

** This category was forecast once but was never observed.

Same as Table 4.2 except for 24 stations in the Southern Region. Table 4.5.

		, i	ပ			2400				3361		-		3286) !	
SPEED	CONTINGENCY TABLE	CATI CATE CATS CAT4 CAT5 CAT6 CAT7	(NO. (NO. (NO. (NO. (NO. (NO. 03S) 03S)	1.32 0.88 0.76 0.46 0.50 0.57 0.0	8 8	1.29 1.17 0.71 0.30	(280) (199)		1.01 1.08 0.88 0.40 0.09 0.0 0.0	0.69 0.50 0.36 0.0	0.39 0.18 0.0	(992) (310) (70) (11) (1)	1.00 1.02 1.02 0.75 1.29 0.50 1.00		0.97 0.30 0.04 0.0	(1252) (1243) (571) (189) (24) (6) (1)
		SKILL FCST	(KTS) CASES SCORE CORRECT	0.27 52	0.27 52	0.26 50			0.33 64	0.33 66	0.27 60		0.22 47	0.19 47	0.16 45	
	NO.		CASES S		1376					714 0	<u> </u>		_	1311 0	0	
	MEAN	OBS	(KTS)		12.7					11.1	·				· ,	*
	MEAN MEAN	FCST	(KTS)	12.1	12.5	13.3			11.8	11.6	11.8		13.0	12.1 12.0	12.2	•
		A3S ERROR	S(KTS)	3.2	3.4	3.3			3.6	3.7	3.7		و و و	ω. :	8	
DIRECTION	<u>§</u>	<u>P</u>	CASES		1367					709				1299		
DIRECTIC	MEAN	ABS	(550)	25	27	29			33	36	39	,	36	42	46	
	TYPE	0F F0ST		EARLY	를 2년 2년 1년	Local			EARLY	Jewis	LOCAL	. č	7. (1	 2: 1.,	LOCAL	
	FCST	PROJ (HCJRB)			<u>a</u>					000				51.		

Table 4.6. Same as Table 4.2 except for 28 stations in the Central Region.

		80.	ն. . O	CASES		4067			3991			3967		
				(RC. (RC. 08S)	0.50 0.14	0.60 0.14	0.70 0.29 (10) (7)	* 0.	0.30 *	0.10 **	1.29 0.50	1.00 0.00	0.74 1.36 0.95 0.57 0.31 0.14 0.00 (1198) (907) (291) (71) (7) (4)	
		. CBS		088) 08		0.55 0	0.62 0 (71)	0.71 0.0	0.43 0	0.38 0 (21)	0.62	0.68	0.31 (71)	
	TABL	SST/NO	CA74	(NO.	0.58	0.58	0.85 (317)	09.0	0.67	0.60 0.38 (150) (21)	98.0	0.85	0.57 (291)	
	GENCY	BIAS-NO, FCST/NO, CBS	CATS	(NO. (NO.)	98.0	0.91	1.22 (925)	0.85	0.84	1.01	0.91	0.73	(907)	
03	CONTINGENCY TABLE	BIAS-			1.21 1.03 0.86 0.58 0.52	1.09	0.63 1.22 1.22 0.85 0.62 (1229) (1508) (925) (317) (71)	96.0	0.95	0.81 1.33 1.01 (1954) (1318) (538)	66.0	1.01	1.36	
SPEED				T 08S)	1.21	1.10	0.63	 1.11	1.11	0.81	1.14	1.25	0.74	
		TNECREG	FCST	(KTS) CASES SCORE CORRECT	52	65	47	57	99	65	95	42	42	
			SKILL	SCORE	0.31	0.28	0.24	0.30	0.28	0.21	0.23	0.18	0.15	
	2		PO	CASES		2209			1265	•		1927		
	INV LIV		OBS	(KTS)		13.1			11.7			13.0 12.8		T.
	N v b	Z 1 2	FCST	(KTS)	12.7	12.8	13.8	12.3	12.2	12.5	13.4	13.0	12.9	
			ERROR	SKTS	3.2	3.4	3.4	 3.6	3.8	3.9	3.9	4:1	4.0	
DIRECTION	2		OF OF	(DEG) CASES (KTS)		2187			1249			1911		
DIRECTIC	No to	MILLIN	28808 28808	(DEG)	21	23	26	 27	31	34	29	33	38	
	TYPE	C L	L		EARLY	7117.21	LOCAL	 EARLY	FINAL	LOCAL	EARLY	FINAL	LOCAL	
	FCST	PRO.1	800 J			23			30			42		

* This category was neither forecast nor observed. ** This category was forecast once but was never observed.

Table 4.7. Same as Table 4.2 except for 18 stations in the Western Region.

		1							•							
		C.Z	الد	CASES		,	2603				2498			2503		
-			CAT7	(NO.	(0.30 00.5 65.0	3.00 0.50	7.00 1.00 (1)		0.0 0.0 68.0	1.00	0.50 0.0 (4) (1)	0.67 0.43 0.50 0.00	2.00 0.00	1.00 1.00	
			CATE	(RO,	,	0.0		7.0		0.0	0.0	0.5	0.5		1.0	
A Company of the Comp	. [1]	0, 038	CAT5	(#'0. 0BS)	1		0.38	0.88 0.72 0.31 (249) (76) (26)		0.89	79.0	0.33	0.43	0.48	0.26	
	TABL	BIAS-NO, FCST/NO, CBS	CAT4	(NO.	(0.08 0.00	0.60 0.49	0.72 (76)		0.24	0.51	0.71 (41)	0.67	0.50	0.73 0.5%	
	SENCY	NO.	CAT2 CAT3 CAT4	(NO.	0	0.00	0.60			0.71	99.0	0.94 (147)	1.04	0.71		
Q	CONTINGENCY TABLE	BIAS	CAT2	(NO. 03S)		56.0	0.89	1.10 (571)		1.02 1.09	0.91	1.04 (516)	1.31	1.02	1.21	
SPEED	Ö			(NO.	-	71.1	1.13	1.00 (1678)		1.02	1.07	1.01 (1780)	0.91	1.06	1.00	· · · · · · · · · · · · · · · · · · ·
		PERCENT	FCST	(KTS) CASES SCORE CORRECT		6 ;	65	64	***	89	69	65	57	61	57	***************************************
			SKILL	SCORE	ć	0.23	0.27	0.30		0.25	0.25	0.21	0.22	0.22	0.17	
	ÖN		P	CASES		1	417			•	290			437		
	MEAN		OBS	(KTS)		•	12.5				11.1	. '		10.8	٠	
	MEAN MEAN	,	FCST	(KTS)	2 6 1	0.21	12.6	13.6		11.9	11.9	12.7	.12.9	12.5	12.7	
	MEAN	ABS	ERROR	CASES (KTS) (KTS)		1 .	4.5	4.2		4.3	4.1	4.5	4.8	7.6	6.4	
NOIT	NO.		ii.	CASES		1	412				283			423		
DIRECTION	MEAN	ABS	ERROR	(DEG)	25	7	35	37		37	37	42	47	67	51	
	TYPE	FO.	FCST		> G (s		188	LOCAL		EARLY	FINAL	Local	EARLY	FINAL	LOCAL	
	FCST	PROJ	(HOLFIS)			9	<u></u>				30			42		

Table 4.8. Distribution of absolute errors associated with early and final guidance and local fore-casts of surface wind direction for 94 stations, 0000 GMT cycle.

FORECAST	TYPE		PERCENTAG	E FREQUENCY OF	PERCENTAGE FREQUENCY OF ABSOLUTE ERRORS BY CATEGORY	BY CATEGORY	
(HOURS)	FORECAST	0-30 ₀	40-60°	20-90 _o	100-120°	130-1500	160-180°
			5				
	EARLY	9.62	13.6	3.4	1.6	1.1	0.7
18	FINAL	77.0	15.3	3.7	1.8	1.4	0.8
	LOCAL	73.7	17.1	4.3	2.1	1.8	1.0
	EARLY	72.9	16.6	9.4	2.6	1.6	1.7
30	FINAL	69.2	17.4	0.9	3.1	2.4	1.9
	LOCAL	65.2	18.9	7.6	3.8	2.4	2.1
	EARLY	69.2	17.3	5.7	3.4	2.4	2.0
42	FINAL	64.2	18.8	8.0	4.3	2.6	2.1
	LOCAL	57.3	22.6	9.3	4.7	3.5	2.6
		-					

Table 4.9. Same as Table 4.8 except for 24 stations in Eastern Region.

FORECAST	TYPE		PERCENTAGE	FREQUENCY OF A	PERCENTAGE FREQUENCY OF ABSOLUTE ERRORS BY CATEGORY	CATEGORY	
(HOURS)	FORECAST.	0-300	₀ 09-07	70-900	100-120°	130-150°	160-180°
			,				
	EARLY	77.9	15.0	3.8	1.5	1.2	9.0
18	FINAL	0.97	16.1	0.4	2.1	1.2	9.0
	LOCAL	72.1	18.9	6.9	2.0	1.5	9.0
3							
	EARLY	73.9	16.2	4.0	2.6	1.3	2.0
30	FINAL	70.1	19.0	5.7	2.3	2.1	8.0
	LOCAL	8.79	17.3	7.3	3.8	2.1	1.7
,							
	EARLY	71.8	16.5	4.7	2.6	1.9	2.5
42	FINAL	68.5	17.8	7.0	3.1	2.1	1.5
	LOCAL	. 61.2	20.8	9.2	4.1	2.6	2.1

Table 4.10. Same as Table 4.8 except for 24 stations in the Southern Region.

								11
FORECAST	TYPE		PERCENTAG	E FREQUENCY OF	PERCENTAGE FREQUENCY OF ABSOLUTE ERRORS BY CATEGORY	BY CATEGORY		
(HOURS)	FORECAST	0-300	₀ 09-05	70-90°	100-120 ^o	130-150°	160-180°	ı
								1
	EARLY	78.0	14.9	3.4	1.7	1.2	0.8	
18	FINAL	75.3	15.9	4.8	1.8	1.4	0.8	
	LOCAL	73.4	17.3	4.2	2.4	1.8	6.0	
	EARLY	0.69	17.3	5.8	3.7	2.0	2.2	
30	FINAL	0.79	16.5	5.6	4.8	3.0	3.1	
	LOCAL	62.1	19.7	7.8	4.1	3.4	2.9	
	EARLY	0.99	18.8	6.5	3.6	3.4	1.7	
42	FINAL	57.9	20.6	10.2	5.3	3.5	2.5	
	LOCAL	50.1	26.7	10.4	5.8	3.8	3.2	

Table 4.11. Same as Table 4.8 except for 28 stations in the Central Region.

	160-180°	0.4	0.7	0.7	1.0	1.5	1.3	1.2	1.7	1.7
BY CATEGORY	130-1500	0.7	1.0	1.3	1.2	2.2	2.1	1.5	1.9	3.1
PERCENTAGE FKEQUENCY OF ABSOLUTE ERRORS BY CATEGORY	100-1200	1.1	1.3	1.8	1.7	2.5	3.0	3.2	3.7	4.0
GE FKEQUENCY OF	20-900	2.3	2.6	4.0	3.8	0.9	7.3	5.0	8.9	9.1
PERCENTA	c09-07	11.3	13.8	16.1	16.3	17.8	21.0	16.3	17.8	21.8
	0-300	84.2	9.08	76.1	0.97	70.0	65.3	72.8	68.1	60.3
TYPE	FORECAST	EARLY	FINAL	LOCAL	EARLY	FINAL	LOCAL	EARLY	FINAL	LOCAL
FORECAST	(HOURS)		18			30			42	

Table 4.12. Same as Table 4.8 except for 18 stations in the Western Region.

FORECAST	TYPE		PERCENTAG	E FREQUENCY OF	PERCENTAGE FREQUENCY OF ABSOLUTE ERRORS BY CATEGORY	BY CATEGORY	
(HOURS)	FORECAST	0-300	₀ 09-07	70-900	100-1200	130-150°	160-180°
	EARLY	99.99	16.7	7.3	4.2	2.9	2.4
18	FINAL	0.89	17.2	9.4	3.9	4.1	2.2
	LOCAL	6.89	15.3	3.6	3.2	5.1	3.9
	EARLY	66.1	16.3	6.7	4.2	3.9	2.8
30	FINAL	6.89	12.4	7.8	9.4	2.5	3.9
	LOCAL	0.49	13.4	9.2	7.9	2.5	4.5
	EARLY	54.4	19.8	0.6	7.9	5.4	5.0
42	FINAL	51.3	20.8	10.4	7.6	5.7	5.2
B	LOCAL	53.2	18.9	7.8	6. 4	7.1	9.9

Table 5.1 Definitions of the categories used for guidance forecasts of cloud amount.

Category	Cloud Amount (Opaque Sky Cover in tenths)
	•
1	0-1
2	2-5
3	6-9
4	10 .

Table 5.2 Comparative verification of early and final guidance and local forecasts of four categories of cloud amount (clear, scattered, broken, overcast) for 94 stations, 0000 GMT cycle.

NO. OF	CASES		12710			12337			12339	
SKILL	SCORE	.385	.381	. 360	.383	.383	.315	.303	.304	. 225
PERCENT	CORRECT	55.5	55.3	52.2	59.8	58.7	49.5	9.67	49.7	41.1
Ω	CAT4	1.03	1.04	. 85	1.00	1.14	.77	66.	1.12	.71 (4281)
T/NO. 0B	CAT3	76.	96.	1.35 (2136)	.75	.80	1.80 (1345)	.93	1.11	1,52 (2048)
BIAS - NO, FCST/NO, OBS	CAT 2 (No. Obs.	.83	.82	1.46 (2380)	.82	.77	1.98 (1613)	.82	.74	1,75 (2332)
BIAS -	CAT 1	1.09	1.09	. 69	1.13	1.00	.67	1.17	.97	(3678)
TYPE OF	FORECAST	EARLY	FINAL	LOCAL	EARLY	FINAL	LOCAL	EARLY	FINAL	LOCAL
PROJECTION	(HRS)		18			39			617	7

Table 5.3 Same as Table 5.2 except for 24 stations in the Eastern Region.

PROJECTION	TYPE OF	BIAS -	- NO, FCST/NO, OBS	L/NO, 0B	S	PERCENT	SKILL	NO. OF
(HRS)	FORECAST	CAT 1	CAT 2	CAT3	CAT4	CORRECT	SCORE	CASES
	EARLY	1.13	.76	. 63	1.06	56.6	.387	
18	FINAL		.77	76.	1.07	56.0	.379	3093
	LOCAL	.60 (728)	1.51 (571)	1.37 (543)	1.83 (1251)	53.1	. 363	
	EARLY	1.23	.48	1.06	.95	59.8	.389	•
90 40	FINAL	76.	.50	1.14	1.15	60.7	.395	3029
)	LOCAL	.67	1.91 (370)	1.89 (307)	.80	51.8	. 331	
	EARLY	1.32	.73	66.	. 36*	50.0	.303	
42	Z Z	.87	99.	1.25	1.12	50.1	.295	3012
	LOCAL	.51 (700)	1.69	1.44 (553)	.77	45.2	.262	

Table 5.4 Same as Table 5.2 except for 24 stations in the Southern Region.

NO, OF	CASES		3275				3230			3163	
SKILL	SCORE	.414	.393	.374		.395	. 395	. 338	.323	. 322	.205
PERCENT	CORRECT	57.6	56.2	53.0	:	60.2	60.3	52.1	51.4	51.0	39.4
38	CAT4	1.00	1.00	.73 (1020)		.93	1.04	.68	.97	1.07	.51
1/NO, 0E	CAT3	.91	.91	1.36 (527)		.53	.57	1.73	.72	66.	1.53 (505)
BIAS - NO, FCST/NO, OBS	CAT 2 (No. Obs.	.95	.92	1.54 (626)		1.10	96.	1.94 (421)	.93	62.	1.86 (621)
BIAS -	CAT 1 (No. Obs.)	1.08	1.09	.77		1.13	1.08	.79 (1427)	1.20	1.07	(1060)
TYPE OF	FORECAST	EARLY	FINAL	LOCAL	7 100	EANKLY FILLS	FINAL	LOCAL	EARLY	FINAL	LOCAL
PROJECTION	(HRS)		18				08			42	

Table 5,5 Same as Table 5.2 except for 28 stations in the Central Region.

NO. 0F	CASES		3893			3732			3791	
SKILL	SCORE	.378	.388	.341	.387	.371	. 286	. 298	.305	.210
PERCENT	·· CORRECT	59.3	56.1	51.0	59.2	58.1	47.1	4.67	50.2	40.2
S	CAT4	1.07	1.08	.93	1.10	1.22	.83	1.06	1.20	.81 (1376)
r/No. OB	CATS (No. Obs	1.10	1.02	1.33 (627)	.92	1.01	1.92	1.12	1.20	1.62 (588)
BIAS - NO, FCST/NO, OBS	CAT 2	.75	92.	1.53 (714)	.75	72	2.21 (476)	. 88	.75	1.81 (706)
BIAS -	CAT 1	1,01	1.03	.58 (1155)	1.00	98.	.53	76.	. 81	(1121)
TYPE OF	FORECAST	EARLY	FINAL	LOCAL	EARLY	FINAL	LOCAL	EARLY	FINAL	LOCAL
PROJECTION	(HRS)		18			42			CII	71

Table 5.6 Same as Table 5.2 except for 18 stations in the Western Region.

DODIECTION	דיס דימינד	RIAS -	- NO FEST/NO OBS	L/NO. OR	· ·	PFRCENT	SKILL	NO. 0F
L VOJEC I ON	IYPE UF		201 1011	70 1011	2.			
(HRS)	FORECAST	CAT 1	CAT 2	CAT3	CAT4	- CORRECT	SCORE	CASES
			J					
	EARLY	1.16	98.	06.	.9.7	51.9	.337	, I
18	FINAL	1.15	.83	86.	96.	52.1	.341	2449
	LOCAL	.80	1.20 (469)	1.36 (439)	.87 (732)	51.6	.352	
	EARLY	1.21	.95	67.	76.	9.45	.330	
0£ 43	FINAL	1.13	.91	87.	1.11	55.1	.340	2346
	LOCAL	. 69	1.81 (346)	1.65	73	46.7	. 285	
	EARLY	1.30	69.	.85	76.	47.1	.262	
77	FINAL	1.15	92.	.92	1.03	46.7	.262	2373
<u>4</u>	LOCAL	.72 (797)	1.57 (446)	1.45 (422)	.69	39.8	.204	

Table 6.1. Definitions of the categories used for guidance forecasts of ceiling and visibility.

Category	Ceiling (ft)	Visibility (mi)
1	< 200	< 1/2
2	200-400	1/2 - 7/8
3	500-900	1 - 2 1/2
4	1000-2900	3-4
5	3000-7500	5-6
6	> 7500	> 6

Table 6.2 Comparative verification of early and final guidance, persistance, and local ceiling forecasts for 94 stations, 0000 GMT cycle.

			Bia	s by Car	reforh				Neidne
Projection (b)	Type of Forecast	1	2	3	<u> </u>	5	6	Percent Correct	Skill Score
12	Early Final Local Persistence No. Obs.	.71 .75 .55 .89 294	.99 .97 .94 .89 548	1.01 1.04 .85 .83	1.03 1.05 1.17 1.00 1943	1.04 1.02 1.07 .99 1712	.99 .99 .98 1.03 7705	62.7 · 66.1 73.0 75.6	.390 .446 .560 .593
15	Local Persistence No. Obs.	.32 1.17 222	.58 .81 666	.79 .84 892	1.20 .97 2017	1.16 1.02 1687	.99 1.03 7949	66.4 66.4	.443 .435
18	Early Final Persistence No. Obs.	.52 .48 2.73 102	.98 .89 1.17 481	1.00 1.03 .92 833	1.07 1.08 .91 2191	1.05 1.06 1.08 1651	.98 .97 .98 8275	63.4 63.8 61.7	.375 .383 .347
21	Local Persistence No. Obs.	.18 4.34 62	.33 1.44 380	.70 1.10 683	1.21 1.02 1917	1.25 .96 1816	.96 .95 8587	65.1	.376
24	Early Final Persistence No. Obs.	.38 .47 2.60 107	1.05 .97 1.42 397	.84 .95 1.20 640	1.12 1.18 1.14 1752	.97 1.02 .90 /	1.00 .97 .94 8680	65.7 64.6 56.4	.374 .365 .239
36	Early Final Persistence No. Obs.	.35 .69 .94 297	.94 1.16 .93 604	.79 .92 .82 935	1.11 1.42 ·.98 2035	1.04 1.10 .99 1801	1.02 .88 1.04 7866	54.4 48.5	.299 .293 .148
48	Early Final Persistence No. Obs.	.23 .24 2.93 95	.95 .91 1.44 360	.82 .87 1.19 643	1.05 1.19 1.15 1738	.94 1.15 .91 1956	1.03 .95 .94 8713	60.3 47.9	.285 .291 .087

Table 6.3 Same as Table 6.2 except for visibility.

			Bia	s by C	recory		***************************************		Hebbe
Projection (b)	Type of Forecast	1	2	3	4	5	6	Percent Correct	Skill Score
12	Early Final Local Persistence No. Obs.	.91 .74 .54 .73 351	1.27 1.10 1.30 .89 213	.89 1.01 .76 .79 873	1.09 1.12 1.34 .82 976	.83 .84 1.31 1.01 929	1.01 1.01 .97 1.05 9334	69.4 71.2 74.8 78.6	.295 .339 .449 .486
15	Local Persistence No. Obs.	.36 .95 279	.61 .65 284	.44 .57 1232	1.21 .89 910	1.09 .85 1103	1.08 1.10 9125	69.6 70.2	.317 .317
18	Early Final Persistence No. Obs.	.70 .47 2.04 135	.85 .84 .78 255	.82 .85 .75 982	1.15 1.18 1.14 723	.89 .80 .92 1061	1.03 1.03 1.01 10072	71.7 72.7 70.6	.276 .293 .260
21	Local Persistence No. Obs.	.17 3.51 76	.33 .91 206	.44 .90 795	1.32 1.34 601	1.13 1.09 872	1.03 .96 10414	76.0 71.1	.260 .211
24	Early Final Persistence No. Obs.	.79 .45 2.76 100	1.06 .99 1.20 166	.80 .94 1.04 710	1.17 1.11 1.25 661	.77 .91 1.13 858	1.02 1.01 .95 10734	76.6 76.3 70.6	.267 .273 .189
36	Early Final Persistence No. Obs.	.45 .80 .79 349	.7.5 .91 .88 226	.86 1.01 .80 924	1.05 1.23 .81 1014	.86 .97 .98 989	1.05 .99 1.05 9726	66.6 64.8 63.3	.200 .213 .121
48 •	Early Final Persistence No. Obs.	.23 .24 2.76 100	.89 .72 1.21 165	1.06 .99 1.05 700	.94 1.08 1.29 641	.64 .77 1.14 854	1.04 1.02 .95 10769	76.0 75.3 66.5	.213 .208 .071

Table 6.4 Same as Table 6.2 except for 1200 GMT cycle.

	m		Bia	s by Ca	tegory				Beidhe
Projection (b)	Type of Forecast	1	2	3	4	5	6	Percent Correct	Skill Score
20	Early Final	.62	.93 .94 .85	.96 .98 .91	1.06 1.00 1.26	.98 .99 .96	1.00 1.01 .98	67.7 70.1 76.5	.405 .448 .575
12	Local Persistence No. Obs.	.30 .68 98	.96 373	1.05 612	1.13 1694	.94 1952	.99 8510	76.7	.576
15	Local Persistence No. Obs.	.23 .56 124	.79 .88 413	.96 .98 653	1.26 1.11 1721	.94 .96 1905	.99 1.00 8477	70.6 68.7	.471
18	Early Final Persistence No. Obs.	.76 1.11 .38 190	.95 1.07 .76 491	.99 .91 .92 736	1.01 .97 1.03 1905	1.04 1.00 1.00 1894	1.01 1.01 1.03 8421	63.6 64.8 63.1	.368 .385 .347
21	Local Persistence No. Obs.	.21 .28 241	.78 .69 526	1.01 .83 768	1.24 .98 1925	.95 1.03 1774	.99 1.06 7945	63.6 59.1	.385
24	Early Final Persistence No. Obs.	.59 .66 .24 304	1.06 1.23 .61 609	1.01 .93 .71 949	1.04 1.02 .97 2036	1.06 1.12 1.04 1813	.98. .97 1.09 7971	59.4 60.0 55.5	.341 .356 .240
36	Early Final Persistence No. Obs.	.34 .33 .76 98	1.17 1.17 .90 415	.95 1.07 1.04 648	1.00 1.12 1:13 1747	.93 1.13 .96 1969	1.02 .94 .99 8803	63.2 61.7 52.4	.318 .322 .133
48	Early Final Persistence No. Obs.	.43 .52 .24 304	1.01 1.10 .60 627	.92 1.06 .71 944	.90 1.00 .97 2023	1.09 1.28 1.05 1810	1.04 .94 1.09 7973	56.0 54.3 47.2	.271 .273 .098

Table 6.5 Same as Table 6.3 except for 1200 GMT cycle.

Droingtion	Type of		Bia	s by Ca	Legory				Heidhe
Projection (b)	Forecast	1	2	3	۷;	5	6	Percent Correct	Skill Score
12	Early Final Local Persistence No. Obs.	.38 .39 .45 .86 93	.92 .91 1.06 1.30 158	.87 .89 .73 1.13 657	.88 .95 1.48 .90 634	.84 .87 1.35 1.15 813	1.04 1.03 .96 .98 10305	78.5 79.9 81.3 83.3	.298 .355 .465 .507
15	Local Persistence No. Obs.	.48 .74 105	1.39 1.80 110	.87 1.24 607	1.69 .91 634	1.32 1.20 787	.94 .97 10501	77.9 79.1	.367 .370
18	Early Final Persistence No. Obs.	.79 .61 .47 178	1.15 1.20 1.43 149	.98 .98 1.18 671	.91 .93 .82 754	.79 .93 1.12 878	1.03 1.02 .99 10607	75.8 75.8 75.3	.269 .285 .297
21	Local Persistence No. Obs.	.39 .32 244	1.31 1.15 173	1.06 1.06 705	1.79 .73 775	1.12 1.08 866	.93 1.03 9856	70.5 72.2	.288 .235
24	Early Final Persistence No. Obs.	.78 .85 .24 353	1.22 1.07 .91 236	1.12 1.13 .86 932	.91 .90 .61 1012	.93 1.05 .98 995	1.01 1.00 1.09 9756	67.1 67.1 67.1	.252 .261 .177
36	Early Final Persistence No. Obs.	.42 .25 .82 102	.91 .95 1.24 174	1.14 1.24 1.14 701	.89 1.07 ·.95 651	.74 .91 1.14 857			.22 .228 .136
. 48	Early Final Persistence No. Obs.	.48 .49 .24 355	.93 1.21 .98 219	1.03 1.08 .85 935	.93 .99 .61 1002	.98 1.04 1.02 962	1.03 1.00 1.08 9807	66.3 65.2 63.0	.205 .202 .071

Table 6.6 Comparative verification of early and final guidance, persistance and local ceiling forecasts for 94 stations, 0000 GMT cycle. Scores are computed from two-category contingency tables.

Projection	Type of Forecast	Rel Freq Cats. 1&2 combined	Bias Cats. 1&2 combined	Percent Correct	Heidke Skill Score	Threat Score
12	Early Final Local Persistence	.068	.899 .900 .815 .892	91.6 93.1 95.1 95.4	.300 .426 .580 .619	.208 .301 .434 .474
15	Local Persistence	.066	.516 .902	93.9 93.4	.364	.244
18	Early Final Persistence	.043	.899 .820 1.44	94.2 94.7 92.7	.266 .291 .272	.174 .189 .183
21	Local Persistence	.033	.308 1.851	96.4 92.6	.157	.093
24	Early Final Persistence	.037	.908 .865 1.668	94.9 94.7 92.2	.256 .215 .173	.165 .138 .173
36	Early Final Persistence	.067	.746 1.002 .933	91.1 90.0 89.6	.188	.132 .144 104
48	Early Final Persistence	.036	.806 .777 1.734	94.9 94.8 91.1	.179 .164 .050	.115 .105 .049

Table 6.7 Same as Table 6.6 except for visibility.

Projection	Type of Forecast	Rel Freq Cats. 1&2 combined	Bias Cats. 1&2 combined	Percént Correct	Heidke Skill Score	Threat Score
12	Early Final Local Persistence	.044	1.046 .874 .828 .791	93.3 94.6 96.1 96.4	.228 .330 .504 .536	.152 .218 .355 .384
15	Local Persistence	.044	.485 .801	95.6 94.6	.293	.186
18	Early Final Persistence	.029	.797 .709 1.217	95.6 96.0 94.6	.140 .178 .148	.089 .110 .095
21	Local Persistence	.022	.287 1.610	97.6 95.0	.118 .095	.068
24	Early Final Persistence	.020	.959 .789 1.786	96.7 96.9 95.0	.137 .132 .087	.083 .079 .059
36	Early Final Persistence	.043	.567 .842 .826	93.9 93.3 93.1	.082 .132 .096	.059 .091 .070
48	Early Final Persistence	.020	.642 .540 1.792	97.0 97.1 94.7	.059 .050 .024	.038 .033 .025

Table 6.8 Same as Table 6.6 except for 1200 GMT cycle.

Projection	Type of Forecast	Rel Freq Cats. 1&2 combined	Bias Cats. 1&2 combined	Percent Correct	Heidke Skill Score	Threat Score
1,2	Early Final Local Persistence	.036	.864 .879 .738 .900	95.4 96.3 97.2 97.3	.285 .432 .537 .589	.182 .291 .380 .431
15	Local Persistence	.040	.663 .806	96.3 95.9	.432	.290 .280
18	Early Final Persistence	.050	1.246 1.082 .653	93.3 93.2 94.3	.260 .305 .279	.173 .206 .182
21 .	Local Persistence	.058	.604 .558	93.7 93.2	.289	.191 .146
24	Early Final Persistence	.067	.904 1.043 .431	91.0 90.5 91.7	.244 .255 .131	.171 .180 .092
36	Early Final Persistence	.038	1.014 1.007 .873	94.3 94.2 93.6	.212 .203 .063	.138 .132 .050
48	Early Final Persistence	.068	.823 .914 .481	90.3 90.1 90.8	.168 .186 .042	.123 .136 .044

Table 6.9 Same as Table 6.7 except for 1200 GMT cycle.

Projection	Type of Forecast	Rel Freq Cats. 1&2 combined	Bias Cats. 1&2 combined	Percent Correct	Heidke Skill Score	Threat Score
12	Early Final Local Persistence	.020	.721 .717 .833 1.139	97.2 97.5 97.9 98.0	.171 .266 .407 .526	.102 .162 .264 .366
15	Local Persistence	.017	.944 1.284	97.7 97.4	.280 .305	.171
18	Early Final Persistence	.025	.954 .878 .905	96.1 96.3 96.3	.168 .193 .193	.104 .118 .118
21	Local Persistence	.033	.662 .767	95.5 95.3	.208	.130
24	Early Final Persistence	.044	.961 .937 .508	93.1 93.1 94.1	.175 .162 .092	.118 .110 .063
36	Early Final Persistence	.021	.728 .692 1.083	96.8 96.7 96.0	.102 .057 .049	.062 .038 .036
48	Early Final Persistence	.043	.652 .767 .521	93.7 93.4 93.7	.085 .096 .017	.062 .070 .023

Table 6.10 Heidke skill score for ceiling categories 1 and 2 combined for the comparative verification of early and final guidance, peristence, and local forecasts for 94 stations, 0000 GMT cycle.

			- Year		
Projection (h)	Type of Forecast	1975/76	1976/77	1977/78	1978/79
12	Early Final Local Persistence No.Cases	.368 .540 .607 13915	.317 · .226 .452 .529 4199	.352 .431 .566 .607 14030	.300 .426 .580 .619 13152
15 .	Local . Persistence No. Cases	.320 .242 14984		.363 .421 14993	.364 .443 13433
. 18	Early Final Persistence No.Cases	.144 .239 14009	.190 .246 .123 4227	.224 .216 .262 14202	.266 .291 .272 13533
21	Local Persistence No.Cases	.166 .167 14979	.053 .086 4279	.121 .176 14983	.157 .178 13445
24	Early Final Persistence No. Cases	.043 .131 14052	.166 .144 .050 4224	.182 .188 .149 14203	.252 .215 .173 13536
36	Early Final Persistence No. Cases		.187 .054 4227	.215 .235 .127 4971	.188 .198 .133 13538
 48	Early Final Persistence No. Cases		.132 .036 4224	.202 .195 .099 4973	.179 .164 .050 13535

Table 6.11 Same as Table 6.10 except for visibility.

			Year			
rojection (b)	Type of Forecast	1975/76	1976/77	1977/78	1978/79	_
	Early		. 223	. 255	.228	
	Final	.260	.217	.345	.330	
. 12	Local	.493	.462	.524	.504	
14	Persistence	.541	.494	.570	.536	
	No. Cases	14142	4200	11810	12676	
		205	.194	. 302	. 293	
	Local	.295	.193	.334	.284	
15	Persistence No. Cases	.331 15322	4282	12633	12933	
		<u> </u> 				
	Early		.136	.218	.140	
	Final	.120	.148	. 207	.178	
18	Persistence	.194	.113	.215	.146	
	No. Czses	14217	4226	11959	13228	
			051	· .166	.118	
	Local	.117	.051 .090	.114	.095	
21	Persistence	.107	4274	12607	12964	
	No. Cases	15312	42/4			
	F1	1.	.138	.147	.137	
•	Early	.000	.127	.157	.132	
24	Final Persistence		.056	.130	.087	
	No. Cases	14230	4225	11959	13229	
				7.00	.082	
	Early		mm /	.109 .158	.132	
26	Final		.074	.099	.096	1
36	Persistenc	e	.045 4226	4182	13228	
·	No. Cases		4220	7202		
				.142	.059	
	Early	1 .	.048	.094	.050	
48	Final Persisteno		.018	.051	.024	
	No. Cases		4225	4182	13229	

Table 6.12 Same as Table 6.10 except for the 1200 GMT cycle.

			Year		
Projection (b)	Type of Forecast	1975/76	1976/77	1977/78	1978/79
	Early		:157	.277	.285
	Final	.301	.251.	.351	.432
12	Local	.472	.420	.487	.537
	Persistence	.520	.387	.576	.431
	No. Cases	13486	4217	14228	13238
	Local	.387	.343	300	/20
15	Persistence	.344	.249	.390	.432
	No. Cases	14779	3232	.423 14675	.416 13293
	Early		. 215	.250	.260
18	Final	.149	.272	.288	. 305
10	Persistence	. 274	.215	.353	.279
	No. Cases	13632	4269	14454	13637
21	Local Persistence No. Cases	.237 .195 14786	.270 .143 4216	.306 .229 14672	.289 .222 13179
	Early		. 272	.232	.244
24	Final	.100	. 253	-298 -	.255
	Persistence	.126	.106	.176	.131
	No. Cases	13723	.4269	14452	13682
	Early			.212	.212
36	Final		.064	.215	.203
30	Persistence		002	.054	.063
	No. Cases		4266	5157	13680
	Early			204	.168
- 48	Final		.153	.195	.186
. 40	Persistence		.002	.070	.042
	No. Cases		4269	5755	13681

Table 6.13. Same as Table 6.11 except for the 1200 GMT cycle.,

A CONTRACT OF THE CONTRACT OF		The second secon	Year	The first death conserver and the conserver and	
Projection (h)	Type of Forecast	1975/76	1976/77	1977/78	1978/79
	Early		.116	.205	.171
	Final	.087	.109	.266	.266
12	Local	.452	.367	.457	.407
	Persistence	.441	.494	.442	.526
	No. Cases	13783	4237	12026	12660
	Local	.340	.257	.323	.280
	Persistence		.317	.309	.305
15	No. Cases	15151	3234	12393	12744
			.094	-137	.168
	Early	.070	.131	.148	.193
18	Final Persistence	í	.121	.221	.193
	No. Cases	13895	4278	12212	13237
		.206	.169 .	. 220	.208
0.1	Local Persistence		.089	.133	.115
21	No. Cases	15127	4223	12393	12619
				102	.175
	Early			.193	
24	Final	.087	-	.087	.092
'.	Persistence No. Cases	.071 13897		12212	13281
					.102
	Early		074	.139	.057
36	Final	1	.074	. 093	.049
. 50	Persistence No. Cases		.022 4277	.054 4345	13282
					005
	Early	1		.152	.085
48	Final		.024	.129	.096 .017
,	Persistence No. Cases	2	.011 4278	.032 4345	13280
					

Table 6.14. Bias for ceiling categories 1 and 2 combined for the comparative verification of early and final guidance, persistence, and local forecasts for 94 stations, 0000 GMT cycle.

and the state of t			Year		
Projection (h)	Type of Forecast	1975/76	1976/77	1977/78	1978/79
12	Early Final Local Persistence	.59 .76 .82	.79 .37 .67 .81	. 89 . 84 . 88 . 81	.90 .90 .82 .89
15	Local Persistence	.54 .95		.55 .96	.52 .90
18	Early Final Persistence	.20 1.66	1.26 1.00 1.73	.85 .78 1.52	.90 .82 1.44
21	Local Persistence	.35 2.27	.17 2.22	.38	.31
24	Early Final Persistence	.10 2.09	1.00 .73 1.99	.75 .75 /1.72	.91 .87 1.67
36	Early Final Persistence		.89 .80	.59 .72 .97	.75 1.00 .93
48	Early Final Persistence		1.16	.66 .71 2.06	.81 .78 1.73

Table 6.15. Same as Table 6.14 except for visibility.

		Year						
Projection (h)	Type of Forecast		1976/77	1977/78	1978/79			
12	Early Final Local Persistence	. 47 . 79 . 79	.8; .75 .76 .69	.83 .81 .82 .81	1.05 .87 .83 .79			
15	Local Persistence	.51 .90	.38	.49 .76	.49 .80			
18	Early Final Persistence	14	1.20 .85 1.08	.77 .68 1.24	.80 .71 1.22			
21	Local Persistence	.28	.37 1.29	.32 1.66	.29 1.61			
24	Early Final Persistence	.00	1.35 1.26 1.29		.96° .79 1.79			
36 .	Early Final Persistence	2	.45 .70	.49 .74 .90	.57 .84 .83			
48	Early Final Persistence	e	1.21 1.14	.83 .58 1.87	.64 .54 1.79			

Table 6.16. Same as Table 6.14 except for the 1200 GMT cycle.

		Year						
Projection (h)	Type of Forecast	1975/76	1976/77	1977/78	1978/79			
12	Early Final Local Persistence	.66 .69 .91	1.00 .91 .67 .94	77 .83 .90 .73	.86 .88 .74 .90			
15	Local Persistence	.62 .73	.59 .74	.68 .78	.66 .81			
18	Early Final Persistence	.28 .60	1.24 1.06 .63	.86 1.04 .65	1.25 1.08 .65			
21	Local Persistence	. 50 . 45	.54 .51	.60	.60 .56			
24	Early Final Persistence	.17	.77 .84 .39	.86 .96 .46	.90 .1.04			
36	Early Final Persistence		1.57 .89	1.06 .72 .92	1.01 1.01 .87			
. 48	Early Final Persistence	·	.92 .39	.58 .60 .47	.82 .91 .48			

Table 6.17. Same as Table 6.15 except for the 1200 GMT cycle.

		A	Mat			
rojection (h)	Type of Forecast	1975/76	1976/77	1977/78	1978/79	
. 12	Early Final Local Persistence	.24 .70 1.09	.53 .60 .72 1.04	.70 64 1.16 .84	.72 .71 .83 1.14	
15	Local Persistence	.77	.74 1.21	.80 1.06	.94 1.28	
18	Early Final Persistence	.15 .72	1.22 .94 1.08	.65 .72 .82	.95 .88 .91	
21	Local Persistence	.56	.55	.67 .62	.66 .77	
24	Early Final Persistence	.10		-83 -86 -49	.96 .94 .51	•••
36	Early Final Persistence	2	1.00 .95	.66 .49 1.07	.73 .69 1.08	
48	Early Final Persistence	e	.93 .59	65 .56 .59	.65 .77 .52	

Table 7.1. Comparative verification of early and final guidance and local max/min temperature forecasts for 87 stations, 0000 GMT cycle.

FORECAST PROJECTION (HOURS)	TYPE OF FORECAST	MEAN ALGEBRAIC ERROR (^O F)	MEAN ABSOLUTE ERROR ([°] F)	NUMBER (%) OF ABSOLUTE ERRORS ≥ 10	NUMBER OF CASES
	EARLY	0.0	3.5		
24 (MAX)	FINAL	-0.4 -0.4	3.7	778 (5.3) 595 (4.0)	14770
	EARLY	9.0	4.5		
36 (MIN)	FINAL	0.4	4.6 4.5	1560 (10.5) 1534 (10.4)	14811
	EARLY	0.0	9.4	1611 (10.9)	
48 (MAX)	FINAL	-0.2	5.0	1917 (13.0) 1525 (10.3)	14765
(11111) 03	EARLY	0.5	ال الكار الم	2495 (16.8)	98871
(NITE) DO	LOCAL	0.1	5. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.		0000

Table 7.2. Same as Table 7.1 except for 26 stations in the Eastern Region.

FORECAST	TYPE	MEAN	MEAN	NUMBER (%)	NUMBER
FRUJECTION (HOURS)	OF FORECAST	ERROR $\binom{\circ}{F}$	ERROR (F)	ERRORS " 10	CASES
	EARLY	-0.3	3.6	194 (4.4)	
. 24 (MAX)	FINAL	6.0-	3.7		4437
	LOCAL	6.0-	3.5		
	EARLY	0.1	4.5		
36 (MIN)	FINAL	0.5	4.5	434 (9.8)	4436
	LOCAL	1.4	9.4		
	EARLY	6.0-	4.5		
48 (MAX)	FINAL	7-0-	4.8	546 (12.3)	4436
, .	LOCAL	-1.2	9*4		
	EARLY	-0.2	5.5		
(NIM) 09	FINAL	1.2	5.6	736 (16.5)	6975
	LOCAL	1.5	5.5		
,	;				
		**************************************	·		

Table 7.3. Same as Table 7.1 except for 23 stations in the Southern Region.

NUMBER OF CASES	3894	3902	3900	3921
NUMBER (%)	176 (4.5)	333 (8.5)	452 (11.6)	592 (15.1)
OF ABSOLUTE	221 (5.7)	343 (8.8)	562 (14.4)	555 (14.2)
ERRORS ≥ 10	159 (4.1)	335 (8.6)	444 (11.4)	593 (15.1)
MEAN ABSOLUTE ERROR (°F)	3.5 3.8 3.4	4.4 4.3	4.7 5.2 4.5	5.1 5.3
MEAN	0.2	0.2	-0.3	-0.1
ALGEBRAIC	-0.3	0.1		0.0
ERROR (^O F)	-0.2	0.7		0.4
TYPE	EARLY	EARLY	EARLY	EARLY
OF	FINAL	FINAL	FINAL	FINAL
FORECAST	LOCAL	LOCAL	LOCAL	LOCAL
FORECAST PROJECTION (HOURS)	. 24 (MAX)	36 (MIN)	48 (MAX).	60 (MIN)

Table 7.4. Same as Table 7.1 except for 22 stations in the Central Region.

FORECAST PROJECTION (HOURS)	TYPE OF FORECAST	MEAN ALGEBRAIC ERROR (^O F)	MEAN ABSOLUTE ERROR (F)	NUMBER (%) OF ABSOLUTE ERRORS ≥ 10	NUMBER OF CASES
24 (MAX)	EARLY FINAL LOCAL	-0.1 0.0 -0.4	3.7	175 (4.7) 243 (6.5) 183 (4.9)	3726.
36 (MIN)	EARLY FINAL LOCAL	0.6 0.3 1.3	5.0 5.2 4.9	493 (13.1) 540 (14.4) 488 (13.0)	3753
48 (MAX)	EARLY FINAL LOCAL	0.7	5.0 5.5 4.9	493 (13.2) 585 (15.7) 436 (11.7)	3722
(NIH) 09	BARLY FINAL LOCAL	0.9	6.2 6.0 5.9	796 (21.1) 717 (19.0) 732 (19.4)	3765

Same as Table 7.1 except for 16 stations in the Western Region. Table 7.5.

FORECAST PROJECTION (HOURS)	TYPE OF FORECAST	MEAN ALGEBRAIC ERROR (°F)	MEAN ABSOLUTE ERROR (°F)	NUMBER (%) OF ABSOLUTE ERRORS ≥ 10	NUMBER OF CASES
24 (MAX)	EARLY FINAL LOCAL	0.3	3.2 3.1 2.9	91 (3.4) 93 (3.4) 73 (2.7)	2713
36 (MIN)	EARLY FINAL LOCAL	1.0	4.0 4.2 4.2	235 (8.6) 243 (8.9) 242 (8.9)	2720
48 (MAX)	EARLY FINAL LOCAL	1.0	4.2 4.2 4.0	215 (7.9) 224 (8.3) 208 (7.7)	2707
(MIM) 09	EARLY FINAL LOCAL	1.9 0.7 1.1	5.1 4.9 4.9	353 (12.9) 360 (13.2) 361 (13.2)	. 2731
	:				

Figure 2.1 Percent improvement in Brier score over climatology of local and final guidance PoP forecasts.

Figure 3.1. The skill scores for guidance and local forecasts of frozen precipitation.

SURFACE WIND DIRECTION 60 0000 GMT RUN ≈90 U.S. STATIONS 55 42-HR LOCAL 50 MEAN ABSOLUTE ERROR (DEGREES) 42-HR 45 FINAL 40 35 EARLY 30 18-HR LOCAL 18-HR FINAL 25 18-HR EARLY 1977-78 1978-79 1976-77 1975-76 1973-74 1974-75 OCTOBER-MARCH COOL SEASON

Figure 4.1. Mean absolute errors for subjective local and objective guidance (early and final) surface wind direction forecasts for approximately 90 U.S. stations.

Figure 4.2. Same as Fig. 4.1 except for wind speed forecasts.

Figure 4.3. Skill scores computed from five category contingency tables for subjective local and objective guidance (early and final) surface wind speed forecasts for approximately 90 U.S. stations.

Figure 4.4. Same as Fig. 4.3 except for two-category contingency tables.

Figure 5.1. Percent correct for local and guidance cloud amount forecasts.

Figure 5.2. Skill score for local and guidance cloud amount forecasts.

Figure 5.3. Bias of the local and guidance cloud amount forecasts of category 1.

Figure 5.4. Same as Fig. 5.3 except for category 2 bias.

Figure 6.1. Skill score computed from two-category contingency tables for guidance, locals, and persistence ceiling forecasts for 94 stations, 0000 GMT cycle.

Figure 6.2. Same as Fig. 6.1.

Figure 6.3 Same as Fig. 6.1 except for visibility forecasts.

Figure 6.4. Same as Fig. 6.3.

Figure 6.5. Bias for categories 1 and 2 combined for guidance, local, and persistence ceiling forecasts for 94 stations, 0000 GMT cycle.

Figure 6.6. Same as Fig. 6.5.

Figure 6.7. Same as Fig. 6.5 except for visibility forecasts.

Figure 6.8. Same as Fig. 6.7.

Figure 7.1. Mean absolute errors of the local and the objective temperature forecasts.

Figure 7.2. Same as Fig. 7.1 except for the min temperature forecasts. 85